TensorBlock¶
- class metatensor.TensorBlock(values: Array, samples: Labels, components: Sequence[Labels], properties: Labels)[source]¶
Basic building block for a
TensorMap.A single block contains a n-dimensional
metatensor.data.Array, and n sets ofLabels(one for each dimension). The first dimension is the samples dimension, the last dimension is the properties dimension. Any intermediate dimension is called a component dimension.Samples should be used to describe what we are representing, while properties should contain information about how we are representing it. Finally, components should be used to describe vectorial or tensorial components of the data.
A block can also contain gradients of the values with respect to a variety of parameters. In this case, each gradient is a
TensorBlockwith a separate set of samples and possibly components, but which shares the same property labels as the originalTensorBlock.>>> import numpy as np >>> block = TensorBlock( ... values=np.array( ... [ ... [1, 2, 4], ... [3, 5, 6], ... ] ... ), ... samples=Labels("samples", np.array([[4], [2]])), ... components=[], ... properties=Labels("properties", np.array([[0], [1], [2]])), ... ) >>> block TensorBlock samples (2): ['samples'] components (): [] properties (3): ['properties'] gradients: None >>> block.samples Labels( samples 4 2 ) >>> block.values[block.samples.position([2])] array([3, 5, 6])
- Parameters:
values (Array) – array containing the values for this block
samples (Labels) – labels describing the samples (first dimension of the array)
components (Sequence[Labels]) – list of labels describing the components (intermediate dimensions of the array). This should be an empty list for scalar/invariant data.
properties (Labels) – labels describing the properties (last dimension of the array)
- property shape¶
Get the shape of the values array in this block.
- copy() TensorBlock[source]¶
get a deep copy of this block, including all the data and metadata
- Return type:
- property values: Array¶
Get the values for this block.
The array type depends on how the block was created. Currently, numpy
ndarrayand torchTensorare supported.
- property samples: Labels¶
Get the sample
Labelsfor this block.The entries in these labels describe the first dimension of the
valuesarray.
- property components: List[Labels]¶
Get the component
Labelsfor this block.The entries in these labels describe intermediate dimensions of the
valuesarray.
- property properties: Labels¶
Get the property
Labelsfor this block.The entries in these labels describe the last dimension of the
valuesarray. The properties are guaranteed to be the same for values and gradients in the same block.
- gradient(parameter: str) TensorBlock[source]¶
Get the gradient of the block
valueswith respect to the givenparameter.- Parameters:
parameter (str) – check for gradients with respect to this
parameter(e.g.positions,cell, …)- Return type:
>>> import numpy as np >>> from metatensor import Labels, TensorBlock >>> block = TensorBlock( ... values=np.full((3, 1, 5), 1.0), ... samples=Labels(["system"], np.array([[0], [2], [4]])), ... components=[Labels.range("component", 1)], ... properties=Labels.range("property", 5), ... ) >>> positions_gradient = TensorBlock( ... values=np.full((2, 3, 1, 5), 11.0), ... samples=Labels(["sample", "atom"], np.array([[0, 2], [2, 3]])), ... components=[ ... Labels.range("direction", 3), ... Labels.range("component", 1), ... ], ... properties=Labels.range("property", 5), ... )
>>> block.add_gradient("positions", positions_gradient) >>> cell_gradient = TensorBlock( ... values=np.full((2, 3, 3, 1, 5), 15.0), ... samples=Labels.range("sample", 2), ... components=[ ... Labels.range("direction_1", 3), ... Labels.range("direction_2", 3), ... Labels.range("component", 1), ... ], ... properties=Labels.range("property", 5), ... ) >>> block.add_gradient("cell", cell_gradient)
>>> positions_gradient = block.gradient("positions") >>> print(positions_gradient) Gradient TensorBlock ('positions') samples (2): ['sample', 'atom'] components (3, 1): ['direction', 'component'] properties (5): ['property'] gradients: None
>>> cell_gradient = block.gradient("cell") >>> print(cell_gradient) Gradient TensorBlock ('cell') samples (2): ['sample'] components (3, 3, 1): ['direction_1', 'direction_2', 'component'] properties (5): ['property'] gradients: None
- add_gradient(parameter: str, gradient: TensorBlock)[source]¶
Add gradient with respect to
parameterin this block.- Parameters:
parameter (str) – add gradients with respect to this
parameter(e.g.positions,cell, …)gradient (TensorBlock) –
a
TensorBlockwhose values contain the gradients of thisTensorBlockvalues with respect toparameter. The labels of the gradientTensorBlockshould be organized as follows:its samples must contain
"sample"as the first dimension, with values containing the index of the corresponding samples in thisTensorBlock, and arbitrary supplementary samples dimension;its components must contain at least the same components as this
TensorBlock, with any additional components coming before those;its properties must match exactly those of this
TensorBlock.
>>> import numpy as np >>> from metatensor import Labels, TensorBlock >>> block = TensorBlock( ... values=np.full((3, 1, 1), 1.0), ... samples=Labels(["system"], np.array([[0], [2], [4]])), ... components=[Labels.range("component", 1)], ... properties=Labels.range("property", 1), ... ) >>> gradient = TensorBlock( ... values=np.full((2, 1, 1), 11.0), ... samples=Labels(["sample", "parameter"], np.array([[0, -2], [2, 3]])), ... components=[Labels.range("component", 1)], ... properties=Labels.range("property", 1), ... ) >>> block.add_gradient("parameter", gradient) >>> print(block) TensorBlock samples (3): ['system'] components (1): ['component'] properties (1): ['property'] gradients: ['parameter']
- has_gradient(parameter: str) bool[source]¶
Check if this block contains gradient information with respect to the given
parameter.
- gradients() Generator[Tuple[str, TensorBlock], None, None][source]¶
Get an iterator over all gradients defined in this block.
- Return type:
Generator[Tuple[str, TensorBlock], None, None]
- property dtype: dtype | dtype¶
Get the dtype of all the values and gradient arrays stored inside this
TensorBlock.
- property device: str | device¶
Get the device of all the values and gradient arrays stored inside this
TensorBlock.
- to(*args, **kwargs) TensorBlock[source]¶
Move all the arrays in this block (values and gradients) to the given
dtype,deviceandarraysbackend.- Parameters:
dtype – new dtype to use for all arrays. The dtype stays the same if this is set to
None.device – new device to use for all arrays. The device stays the same if this is set to
None.arrays – new backend to use for the arrays. This can be either
"numpy","torch"orNone(keeps the existing backend); and must be given as a keyword argument (arrays="numpy").
- Return type: