Source code for metatensor.operations.unique_metadata

"""
Module for finding unique metadata for TensorMaps and TensorBlocks
"""

from typing import List, Optional, Tuple, Union

from . import _dispatch
from ._backend import (
    Labels,
    TensorBlock,
    TensorMap,
    is_metatensor_class,
    torch_jit_is_scripting,
    torch_jit_script,
)


def _unique_from_blocks(
    blocks: List[TensorBlock],
    axis: str,
    names: List[str],
) -> Labels:
    """
    Finds the unique metadata of a list of blocks along the given ``axis`` and for the
    specified ``names``.
    """
    all_values = []
    for block in blocks:
        if axis == "samples":
            all_values.append(block.samples.view(names).values)
        else:
            assert axis == "properties"
            all_values.append(block.properties.view(names).values)

    unique_values = _dispatch.unique(_dispatch.concatenate(all_values, axis=0), axis=0)
    return Labels(names=names, values=unique_values)


def _check_args(
    axis: str,
    names: List[str],
    gradient: Optional[str] = None,
):
    """Checks input args for `unique_metadata_block`"""

    if not torch_jit_is_scripting():
        if not isinstance(axis, str):
            raise TypeError(f"`axis` must be a string, not {type(axis)}")

        if not isinstance(names, list):
            raise TypeError(f"`names` must be a list of strings, not {type(names)}")

        for name in names:
            if not isinstance(name, str):
                raise TypeError(f"`names` elements must be a strings, not {type(name)}")

    if gradient is not None:
        if not torch_jit_is_scripting():
            if not isinstance(gradient, str):
                raise TypeError(f"`gradient` must be a string, not {type(gradient)}")

    if axis not in ["samples", "properties"]:
        raise ValueError(
            f"`axis` must be either 'samples' or 'properties', not '{axis}'"
        )


[docs] @torch_jit_script def unique_metadata( tensor: TensorMap, axis: str, names: Union[List[str], Tuple[str], str], gradient: Optional[str] = None, ) -> Labels: """ Returns a :py:class:`Labels` object containing the unique metadata across all blocks of the input :py:class:`TensorMap` ``tensor``. Unique Labels are returned for the specified ``axis`` (either ``"samples"`` or ``"properties"``) and metadata ``names``. Passing ``gradient`` as a ``str`` corresponding to a gradient parameter (for instance ``"strain"`` or ``"positions"``) returns the unique indices only for the gradient blocks. Note that gradient blocks by definition have the same properties metadata as their parent :py:class:`TensorBlock`. An empty :py:class:`Labels` object is returned if there are no indices in the (gradient) blocks of ``tensor`` corresponding to the specified ``axis`` and ``names``. This will have length zero but the names will be the same as passed in ``names``. For example, to find the unique ``"system"`` indices in the ``"samples"`` metadata present in a given :py:class:`TensorMap`: >>> import numpy as np >>> from metatensor import Labels, TensorBlock, TensorMap >>> import metatensor >>> block = TensorBlock( ... values=np.random.rand(5, 3), ... samples=Labels( ... names=["system", "atom"], ... values=np.array([[0, 0], [0, 1], [1, 0], [1, 1], [2, 3]]), ... ), ... components=[], ... properties=Labels.range("properties", 3), ... ) >>> keys = Labels(names=["key"], values=np.array([[0]])) >>> tensor = TensorMap(keys, [block.copy()]) >>> unique_systems = metatensor.unique_metadata( ... tensor, ... axis="samples", ... names=["system"], ... ) >>> unique_systems Labels( system 0 1 2 ) Or, to find the unique ``(system, atom)`` pairs of indices in the ``"samples"`` metadata present in the ``"positions"`` gradient blocks of a given :py:class:`TensorMap`: >>> gradient = TensorBlock( ... values=np.random.rand(4, 3, 3), ... samples=Labels( ... names=["sample", "system", "atom"], ... values=np.array([[0, 0, 0], [1, 0, 0], [2, 1, 4], [3, 2, 5]]), ... ), ... components=[Labels.range("xyz", 3)], ... properties=Labels.range("properties", 3), ... ) >>> block.add_gradient("positions", gradient) >>> tensor = TensorMap(keys, [block]) >>> metatensor.unique_metadata( ... tensor, ... axis="samples", ... names=["system", "atom"], ... gradient="positions", ... ) Labels( system atom 0 0 1 4 2 5 ) :param tensor: the :py:class:`TensorMap` to find unique indices for. :param axis: a ``str``, either ``"samples"`` or ``"properties"``, corresponding to the ``axis`` along which the named unique indices should be found. :param names: a ``str``, ``list`` of ``str``, or ``tuple`` of ``str`` corresponding to the name(s) of the indices along the specified ``axis`` for which the unique values should be found. :param gradient: a ``str`` corresponding to the gradient parameter name for the gradient blocks to find the unique indices for. If :py:obj:`None` (default), the unique indices of the :py:class:`TensorBlock` containing the values will be calculated. :return: a sorted :py:class:`Labels` object containing the unique metadata for the blocks of the input ``tensor`` or its gradient blocks for the specified parameter. Each element in the returned :py:class:`Labels` object has len(``names``) entries. """ # Parse input args if not torch_jit_is_scripting(): if not is_metatensor_class(tensor, TensorMap): raise TypeError( f"`tensor` must be a metatensor TensorMap, not {type(tensor)}" ) names = ( [names] if isinstance(names, str) else (list(names) if isinstance(names, tuple) else names) ) _check_args(axis, names, gradient) # Make a list of the blocks to find unique indices for if gradient is None: blocks = tensor.blocks() else: blocks = [block.gradient(gradient) for block in tensor.blocks()] return _unique_from_blocks(blocks, axis, names)
[docs] @torch_jit_script def unique_metadata_block( block: TensorBlock, axis: str, names: Union[List[str], Tuple[str], str], gradient: Optional[str] = None, ) -> Labels: """ Returns a :py:class:`Labels` object containing the unique metadata in the input :py:class:`TensorBlock` ``block``, for the specified ``axis`` (either ``"samples"`` or ``"properties"``) and metadata ``names``. Passing ``gradient`` as a ``str`` corresponding to a gradient parameter (for instance ``"strain"`` or ``"positions"``) returns the unique indices only for the gradient block associated with ``block``. Note that gradient blocks by definition have the same properties metadata as their parent :py:class:`TensorBlock`. An empty :py:class:`Labels` object is returned if there are no indices in the (gradient) blocks of ``tensor`` corresponding to the specified ``axis`` and ``names``. This will have length zero but the names will be the same as passed in ``names``. :param block: the :py:class:`TensorBlock` to find unique indices for. :param axis: a str, either ``"samples"`` or ``"properties"``, corresponding to the ``axis`` along which the named unique metadata should be found. :param names: a ``str``, ``list`` of ``str``, or ``tuple`` of ``str`` corresponding to the name(s) of the metadata along the specified ``axis`` for which the unique indices should be found. :param gradient: a ``str`` corresponding to the gradient parameter name for the gradient blocks to find the unique metadata for. If :py:obj:`None` (default), the unique metadata of the regular :py:class:`TensorBlock` objects will be calculated. :return: a sorted :py:class:`Labels` object containing the unique metadata for the input ``block`` or its gradient for the specified parameter. Each element in the returned :py:class:`Labels` object has len(``names``) entries. """ # Parse input args if not torch_jit_is_scripting(): if not is_metatensor_class(block, TensorBlock): raise TypeError( f"`block` must be a metatensor TensorBlock, not {type(block)}" ) names = ( [names] if isinstance(names, str) else (list(names) if isinstance(names, tuple) else names) ) _check_args(axis, names, gradient) # Make a list of the blocks to find unique indices for if gradient is None: blocks = [block] else: blocks = [block.gradient(gradient)] return _unique_from_blocks(blocks, axis, names)