1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
use std::ffi::CString;
use std::iter::FusedIterator;
use crate::block::TensorBlockRefMut;
use crate::c_api::{mts_tensormap_t, mts_labels_t};
use crate::errors::{check_status, check_ptr};
use crate::{Error, TensorBlock, TensorBlockRef, Labels, LabelValue};
/// [`TensorMap`] is the main user-facing struct of this library, and can
/// store any kind of data used in atomistic machine learning.
///
/// A tensor map contains a list of `TensorBlock`s, each one associated with a
/// key in the form of a single `Labels` entry.
///
/// It provides functions to merge blocks together by moving some of these keys
/// to the samples or properties labels of the blocks, transforming the sparse
/// representation of the data to a dense one.
pub struct TensorMap {
pub(crate) ptr: *mut mts_tensormap_t,
/// cache for the keys labels
keys: Labels,
}
// SAFETY: Send is fine since we can free a TensorMap from any thread
unsafe impl Send for TensorMap {}
// SAFETY: Sync is fine since there is no internal mutability in TensorMap
unsafe impl Sync for TensorMap {}
impl std::fmt::Debug for TensorMap {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
use crate::labels::pretty_print_labels;
writeln!(f, "Tensormap @ {:p} {{", self.ptr)?;
write!(f, " keys: ")?;
pretty_print_labels(self.keys(), " ", f)?;
writeln!(f, "}}")
}
}
impl std::ops::Drop for TensorMap {
#[allow(unused_must_use)]
fn drop(&mut self) {
unsafe {
crate::c_api::mts_tensormap_free(self.ptr);
}
}
}
impl TensorMap {
/// Create a new `TensorMap` with the given keys and blocks.
///
/// The number of keys must match the number of blocks, and all the blocks
/// must contain the same kind of data (same labels names, same gradients
/// defined on all blocks).
#[allow(clippy::needless_pass_by_value)]
#[inline]
pub fn new(keys: Labels, mut blocks: Vec<TensorBlock>) -> Result<TensorMap, Error> {
let ptr = unsafe {
crate::c_api::mts_tensormap(
keys.as_mts_labels_t(),
// this cast is fine because TensorBlock is `repr(transparent)`
// to a `*mut mts_block_t` (through `TensorBlockRefMut`, and
// `TensorBlockRef`).
blocks.as_mut_ptr().cast::<*mut crate::c_api::mts_block_t>(),
blocks.len()
)
};
for block in blocks {
// we give ownership of the blocks to the new tensormap, so we
// should not free them again from Rust
std::mem::forget(block);
}
check_ptr(ptr)?;
return Ok(unsafe { TensorMap::from_raw(ptr) });
}
/// Create a new `TensorMap` from a raw pointer.
///
/// This function takes ownership of the pointer, and will call
/// `mts_tensormap_free` on it when the `TensorMap` goes out of scope.
///
/// # Safety
///
/// The pointer must be non-null and created by `mts_tensormap` or
/// `TensorMap::into_raw`.
pub unsafe fn from_raw(ptr: *mut mts_tensormap_t) -> TensorMap {
assert!(!ptr.is_null());
let mut keys = mts_labels_t::null();
check_status(crate::c_api::mts_tensormap_keys(
ptr,
&mut keys
)).expect("failed to get the keys");
let keys = Labels::from_raw(keys);
return TensorMap {
ptr,
keys
};
}
/// Extract the underlying raw pointer.
///
/// The pointer should be passed back to `TensorMap::from_raw` or
/// `mts_tensormap_free` to release the memory corresponding to this
/// `TensorMap`.
pub fn into_raw(mut map: TensorMap) -> *mut mts_tensormap_t {
let ptr = map.ptr;
map.ptr = std::ptr::null_mut();
return ptr;
}
/// Clone this `TensorMap`, cloning all the data and metadata contained inside.
///
/// This can fail if the external data held inside an `mts_array_t` can not
/// be cloned.
#[inline]
pub fn try_clone(&self) -> Result<TensorMap, Error> {
let ptr = unsafe {
crate::c_api::mts_tensormap_copy(self.ptr)
};
crate::errors::check_ptr(ptr)?;
return Ok(unsafe { TensorMap::from_raw(ptr) });
}
/// Get the keys defined in this `TensorMap`
#[inline]
pub fn keys(&self) -> &Labels {
&self.keys
}
/// Get a reference to the block at the given `index` in this `TensorMap`
///
/// # Panics
///
/// If the index is out of bounds
#[inline]
pub fn block_by_id(&self, index: usize) -> TensorBlockRef<'_> {
let mut block = std::ptr::null_mut();
unsafe {
check_status(crate::c_api::mts_tensormap_block_by_id(
self.ptr,
&mut block,
index,
)).expect("failed to get a block");
}
return unsafe { TensorBlockRef::from_raw(block) }
}
/// Get a mutable reference to the block at the given `index` in this `TensorMap`
///
/// # Panics
///
/// If the index is out of bounds
#[inline]
pub fn block_mut_by_id(&mut self, index: usize) -> TensorBlockRefMut<'_> {
return unsafe { TensorMap::raw_block_mut_by_id(self.ptr, index) };
}
/// Implementation of `block_mut_by_id` which does not borrow the
/// `mts_tensormap_t` pointer.
///
/// This is used to provide references to multiple blocks at the same time
/// in the iterators.
///
/// # Safety
///
/// This should be called with a valid `mts_tensormap_t`, and the lifetime
/// `'a` should be properly constrained to the lifetime of the owner of
/// `ptr`.
#[inline]
unsafe fn raw_block_mut_by_id<'a>(ptr: *mut mts_tensormap_t, index: usize) -> TensorBlockRefMut<'a> {
let mut block = std::ptr::null_mut();
check_status(crate::c_api::mts_tensormap_block_by_id(
ptr,
&mut block,
index,
)).expect("failed to get a block");
return TensorBlockRefMut::from_raw(block);
}
/// Get the index of blocks matching the given selection.
///
/// The selection must contains a single entry, defining the requested key
/// or keys. If the selection contains only a subset of the dimensions of the
/// keys, there can be multiple matching blocks.
#[inline]
pub fn blocks_matching(&self, selection: &Labels) -> Result<Vec<usize>, Error> {
let mut indexes = vec![0; self.keys().count()];
let mut matching = indexes.len();
unsafe {
check_status(crate::c_api::mts_tensormap_blocks_matching(
self.ptr,
indexes.as_mut_ptr(),
&mut matching,
selection.as_mts_labels_t(),
))?;
}
indexes.resize(matching, 0);
return Ok(indexes);
}
/// Get the index of the single block matching the given selection.
///
/// This function is similar to [`TensorMap::blocks_matching`], but also
/// returns an error if more than one block matches the selection.
#[inline]
pub fn block_matching(&self, selection: &Labels) -> Result<usize, Error> {
let matching = self.blocks_matching(selection)?;
if matching.len() != 1 {
let selection_str = selection.names()
.iter().zip(&selection[0])
.map(|(name, value)| format!("{} = {}", name, value))
.collect::<Vec<_>>()
.join(", ");
if matching.is_empty() {
return Err(Error {
code: None,
message: format!(
"no blocks matched the selection ({})",
selection_str
),
});
} else {
return Err(Error {
code: None,
message: format!(
"{} blocks matched the selection ({}), expected only one",
matching.len(),
selection_str
),
});
}
}
return Ok(matching[0])
}
/// Get a reference to the block matching the given selection.
///
/// This function uses [`TensorMap::blocks_matching`] under the hood to find
/// the matching block.
#[inline]
pub fn block(&self, selection: &Labels) -> Result<TensorBlockRef<'_>, Error> {
let id = self.block_matching(selection)?;
return Ok(self.block_by_id(id));
}
/// Get a reference to every blocks in this `TensorMap`
#[inline]
pub fn blocks(&self) -> Vec<TensorBlockRef<'_>> {
let mut blocks = Vec::new();
for i in 0..self.keys().count() {
blocks.push(self.block_by_id(i));
}
return blocks;
}
/// Get a mutable reference to every blocks in this `TensorMap`
#[inline]
pub fn blocks_mut(&mut self) -> Vec<TensorBlockRefMut<'_>> {
let mut blocks = Vec::new();
for i in 0..self.keys().count() {
blocks.push(unsafe { TensorMap::raw_block_mut_by_id(self.ptr, i) });
}
return blocks;
}
/// Merge blocks with the same value for selected keys dimensions along the
/// samples axis.
///
/// The dimensions (names) of `keys_to_move` will be moved from the keys to
/// the sample labels, and blocks with the same remaining keys dimensions
/// will be merged together along the sample axis.
///
/// `keys_to_move` must be empty (`keys_to_move.count() == 0`), and the new
/// sample labels will contain entries corresponding to the merged blocks'
/// keys.
///
/// The new sample labels will contains all of the merged blocks sample
/// labels. The order of the samples is controlled by `sort_samples`. If
/// `sort_samples` is true, samples are re-ordered to keep them
/// lexicographically sorted. Otherwise they are kept in the order in which
/// they appear in the blocks.
///
/// This function is only implemented if all merged block have the same
/// property labels.
#[inline]
pub fn keys_to_samples(&self, keys_to_move: &Labels, sort_samples: bool) -> Result<TensorMap, Error> {
let ptr = unsafe {
crate::c_api::mts_tensormap_keys_to_samples(
self.ptr,
keys_to_move.as_mts_labels_t(),
sort_samples,
)
};
check_ptr(ptr)?;
return Ok(unsafe { TensorMap::from_raw(ptr) });
}
/// Merge blocks with the same value for selected keys dimensions along the
/// property axis.
///
/// The dimensions (names) of `keys_to_move` will be moved from the keys to
/// the property labels, and blocks with the same remaining keys dimensions
/// will be merged together along the property axis.
///
/// If `keys_to_move` does not contains any entries (`keys_to_move.count()
/// == 0`), then the new property labels will contain entries corresponding
/// to the merged blocks only. For example, merging a block with key `a=0`
/// and properties `p=1, 2` with a block with key `a=2` and properties `p=1,
/// 3` will produce a block with properties `a, p = (0, 1), (0, 2), (2, 1),
/// (2, 3)`.
///
/// If `keys_to_move` contains entries, then the property labels must be the
/// same for all the merged blocks. In that case, the merged property labels
/// will contains each of the entries of `keys_to_move` and then the current
/// property labels. For example, using `a=2, 3` in `keys_to_move`, and
/// blocks with properties `p=1, 2` will result in `a, p = (2, 1), (2, 2),
/// (3, 1), (3, 2)`.
///
/// The new sample labels will contains all of the merged blocks sample
/// labels. The order of the samples is controlled by `sort_samples`. If
/// `sort_samples` is true, samples are re-ordered to keep them
/// lexicographically sorted. Otherwise they are kept in the order in which
/// they appear in the blocks.
#[inline]
pub fn keys_to_properties(&self, keys_to_move: &Labels, sort_samples: bool) -> Result<TensorMap, Error> {
let ptr = unsafe {
crate::c_api::mts_tensormap_keys_to_properties(
self.ptr,
keys_to_move.as_mts_labels_t(),
sort_samples,
)
};
check_ptr(ptr)?;
return Ok(unsafe { TensorMap::from_raw(ptr) });
}
/// Move the given dimensions from the component labels to the property
/// labels for each block in this `TensorMap`.
#[inline]
pub fn components_to_properties(&self, dimensions: &[&str]) -> Result<TensorMap, Error> {
let dimensions_c = dimensions.iter()
.map(|&v| CString::new(v).expect("unexpected NULL byte"))
.collect::<Vec<_>>();
let dimensions_ptr = dimensions_c.iter()
.map(|v| v.as_ptr())
.collect::<Vec<_>>();
let ptr = unsafe {
crate::c_api::mts_tensormap_components_to_properties(
self.ptr,
dimensions_ptr.as_ptr(),
dimensions.len(),
)
};
check_ptr(ptr)?;
return Ok(unsafe { TensorMap::from_raw(ptr) });
}
/// Get an iterator over the keys and associated blocks
#[inline]
pub fn iter(&self) -> TensorMapIter<'_> {
return TensorMapIter {
inner: self.keys().iter().zip(self.blocks())
};
}
/// Get an iterator over the keys and associated blocks, with read-write
/// access to the blocks
#[inline]
pub fn iter_mut(&mut self) -> TensorMapIterMut<'_> {
// we can not use `self.blocks_mut()` here, since it would
// double-borrow self
let mut blocks = Vec::new();
for i in 0..self.keys().count() {
blocks.push(unsafe { TensorMap::raw_block_mut_by_id(self.ptr, i) });
}
return TensorMapIterMut {
inner: self.keys().into_iter().zip(blocks)
};
}
/// Get a parallel iterator over the keys and associated blocks
#[cfg(feature = "rayon")]
#[inline]
pub fn par_iter(&self) -> TensorMapParIter {
use rayon::prelude::*;
TensorMapParIter {
inner: self.keys().par_iter().zip_eq(self.blocks().into_par_iter())
}
}
/// Get a parallel iterator over the keys and associated blocks, with
/// read-write access to the blocks
#[cfg(feature = "rayon")]
#[inline]
pub fn par_iter_mut(&mut self) -> TensorMapParIterMut {
use rayon::prelude::*;
// we can not use `self.blocks_mut()` here, since it would
// double-borrow self
let mut blocks = Vec::new();
for i in 0..self.keys().count() {
blocks.push(unsafe { TensorMap::raw_block_mut_by_id(self.ptr, i) });
}
TensorMapParIterMut {
inner: self.keys().par_iter().zip_eq(blocks)
}
}
}
/******************************************************************************/
/// Iterator over key/block pairs in a [`TensorMap`]
pub struct TensorMapIter<'a> {
inner: std::iter::Zip<crate::labels::LabelsIter<'a>, std::vec::IntoIter<TensorBlockRef<'a>>>
}
impl<'a> Iterator for TensorMapIter<'a> {
type Item = (&'a [LabelValue], TensorBlockRef<'a>);
#[inline]
fn next(&mut self) -> Option<Self::Item> {
self.inner.next()
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
}
impl<'a> ExactSizeIterator for TensorMapIter<'a> {
#[inline]
fn len(&self) -> usize {
self.inner.len()
}
}
impl<'a> FusedIterator for TensorMapIter<'a> {}
impl<'a> IntoIterator for &'a TensorMap {
type Item = (&'a [LabelValue], TensorBlockRef<'a>);
type IntoIter = TensorMapIter<'a>;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
/******************************************************************************/
/// Iterator over key/block pairs in a [`TensorMap`], with mutable access to the
/// blocks
pub struct TensorMapIterMut<'a> {
inner: std::iter::Zip<crate::labels::LabelsIter<'a>, std::vec::IntoIter<TensorBlockRefMut<'a>>>
}
impl<'a> Iterator for TensorMapIterMut<'a> {
type Item = (&'a [LabelValue], TensorBlockRefMut<'a>);
#[inline]
fn next(&mut self) -> Option<Self::Item> {
self.inner.next()
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
}
impl<'a> ExactSizeIterator for TensorMapIterMut<'a> {
#[inline]
fn len(&self) -> usize {
self.inner.len()
}
}
impl<'a> FusedIterator for TensorMapIterMut<'a> {}
impl<'a> IntoIterator for &'a mut TensorMap {
type Item = (&'a [LabelValue], TensorBlockRefMut<'a>);
type IntoIter = TensorMapIterMut<'a>;
fn into_iter(self) -> Self::IntoIter {
self.iter_mut()
}
}
/******************************************************************************/
/// Parallel iterator over key/block pairs in a [`TensorMap`]
#[cfg(feature = "rayon")]
pub struct TensorMapParIter<'a> {
inner: rayon::iter::ZipEq<crate::labels::LabelsParIter<'a>, rayon::vec::IntoIter<TensorBlockRef<'a>>>,
}
#[cfg(feature = "rayon")]
impl<'a> rayon::iter::ParallelIterator for TensorMapParIter<'a> {
type Item = (&'a [LabelValue], TensorBlockRef<'a>);
#[inline]
fn drive_unindexed<C>(self, consumer: C) -> C::Result
where
C: rayon::iter::plumbing::UnindexedConsumer<Self::Item> {
self.inner.drive_unindexed(consumer)
}
}
#[cfg(feature = "rayon")]
impl<'a> rayon::iter::IndexedParallelIterator for TensorMapParIter<'a> {
#[inline]
fn len(&self) -> usize {
self.inner.len()
}
#[inline]
fn drive<C: rayon::iter::plumbing::Consumer<Self::Item>>(self, consumer: C) -> C::Result {
self.inner.drive(consumer)
}
#[inline]
fn with_producer<CB: rayon::iter::plumbing::ProducerCallback<Self::Item>>(self, callback: CB) -> CB::Output {
self.inner.with_producer(callback)
}
}
/******************************************************************************/
/// Parallel iterator over key/block pairs in a [`TensorMap`], with mutable
/// access to the blocks
#[cfg(feature = "rayon")]
pub struct TensorMapParIterMut<'a> {
inner: rayon::iter::ZipEq<crate::labels::LabelsParIter<'a>, rayon::vec::IntoIter<TensorBlockRefMut<'a>>>,
}
#[cfg(feature = "rayon")]
impl<'a> rayon::iter::ParallelIterator for TensorMapParIterMut<'a> {
type Item = (&'a [LabelValue], TensorBlockRefMut<'a>);
#[inline]
fn drive_unindexed<C>(self, consumer: C) -> C::Result
where
C: rayon::iter::plumbing::UnindexedConsumer<Self::Item> {
self.inner.drive_unindexed(consumer)
}
}
#[cfg(feature = "rayon")]
impl<'a> rayon::iter::IndexedParallelIterator for TensorMapParIterMut<'a> {
#[inline]
fn len(&self) -> usize {
self.inner.len()
}
#[inline]
fn drive<C: rayon::iter::plumbing::Consumer<Self::Item>>(self, consumer: C) -> C::Result {
self.inner.drive(consumer)
}
#[inline]
fn with_producer<CB: rayon::iter::plumbing::ProducerCallback<Self::Item>>(self, callback: CB) -> CB::Output {
self.inner.with_producer(callback)
}
}
/******************************************************************************/
#[cfg(test)]
mod tests {
use crate::{Labels, TensorBlock, TensorMap};
#[test]
#[allow(clippy::cast_lossless, clippy::float_cmp)]
fn iter() {
let block_1 = TensorBlock::new(
ndarray::ArrayD::from_elem(vec![2, 3], 1.0),
&Labels::new(["samples"], &[[0], [1]]),
&[],
&Labels::new(["properties"], &[[-2], [0], [1]]),
).unwrap();
let block_2 = TensorBlock::new(
ndarray::ArrayD::from_elem(vec![1, 1], 3.0),
&Labels::new(["samples"], &[[1]]),
&[],
&Labels::new(["properties"], &[[1]]),
).unwrap();
let block_3 = TensorBlock::new(
ndarray::ArrayD::from_elem(vec![3, 2], -4.0),
&Labels::new(["samples"], &[[0], [1], [3]]),
&[],
&Labels::new(["properties"], &[[-2], [1]]),
).unwrap();
let mut tensor = TensorMap::new(
Labels::new(["key"], &[[1], [3], [-4]]),
vec![block_1, block_2, block_3],
).unwrap();
// iterate over keys & blocks
for (key, block) in &tensor {
assert_eq!(block.values().to_array()[[0, 0]], key[0].i32() as f64);
}
// iterate over keys & blocks mutably
for (key, mut block) in &mut tensor {
let array = block.values_mut().to_array_mut();
*array *= 2.0;
assert_eq!(array[[0, 0]], 2.0 * (key[0].i32() as f64));
}
}
}