Miscellaneous#
Error handling#
-
class Error : public runtime_error#
Exception class used for all errors in metatensor.
N-dimensional arrays#
-
template<typename T>
class NDArray# Simple N-dimensional array interface
This class can either be a non-owning view inside some existing memory (for example memory allocated by Rust); or own its memory (in the form of an
std::vector<double>
). If the array does not own its memory, accessing it is only valid for as long as the memory is kept alive.The API of this class is very intentionally minimal to keep metatensor as simple as possible. Feel free to wrap the corresponding data inside types with richer API such as Eigen, Boost, etc.
Public Functions
-
inline NDArray(const T *data, std::vector<size_t> shape)#
Create a new
NDArray
using a non-owning view inconst
memory with the givenshape
.data
must point to contiguous memory containing the right number of elements as described by theshape
, which will be interpreted as an N-dimensional array in row-major order. The resultingNDArray
is only valid for as long asdata
is.
-
inline NDArray(T *data, std::vector<size_t> shape)#
Create a new
NDArray
using a non-owning view in non-const
memory with the givenshape
.data
must point to contiguous memory containing the right number of elements as described by theshape
, which will be interpreted as an N-dimensional array in row-major order. The resultingNDArray
is only valid for as long asdata
is.
-
inline NDArray(std::vector<T> data, std::vector<size_t> shape)#
Create a new
NDArray
owning itsdata
with the givenshape
.
-
template<typename ...Args>
inline T operator()(Args... args) const &# Get the value inside this
NDArray
at the given indexauto array = NDArray(...); double value = array(2, 3, 1);
-
template<typename ...Args>
inline T &operator()(Args... args) &# Get a reference to the value inside this
NDArray
at the given indexauto array = NDArray(...); array(2, 3, 1) = 5.2;
-
inline const T *data() const &#
Get the data pointer for this array, i.e. the pointer to the first element.
-
inline const std::vector<size_t> &shape() const &#
Get the shape of this array.
-
inline bool is_empty() const#
Check if this array is empty, i.e. if at least one of the shape element is 0.
-
inline NDArray(const T *data, std::vector<size_t> shape)#
TensorMap
serialization#
-
inline void metatensor::io::save(const std::string &path, const TensorMap &tensor)#
Save a
TensorMap
to the file atpath
.If the file exists, it will be overwritten.
TensorMap
are serialized using numpy’s.npz
format, i.e. a ZIP file without compression (storage method isSTORED
), where each file is stored as a.npy
array. See the C API documentation for more information on the format.
-
template<typename Buffer = std::vector<uint8_t>>
Buffer metatensor::io::save_buffer(const TensorMap &tensor)# Save a
TensorMap
to an in-memory buffer.The
Buffer
template parameter can be set to any type that can be constructed from a pair of iterator overstd::vector<uint8_t>
.
-
inline TensorMap metatensor::io::load(const std::string &path, mts_create_array_callback_t create_array = details::default_create_array)#
Load a previously saved
TensorMap
from the given path.create_array
will be used to create new arrays when constructing the blocks and gradients, the default version will create data usingSimpleDataArray
. Seemts_create_array_callback_t()
for more information.TensorMap
are serialized using numpy’s.npz
format, i.e. a ZIP file without compression (storage method isSTORED
), where each file is stored as a.npy
array. See the C API documentation for more information on the format.
-
inline TensorMap metatensor::io::load_buffer(const uint8_t *buffer, size_t buffer_count, mts_create_array_callback_t create_array = details::default_create_array)#
Load a previously saved
TensorMap
from the givenbuffer
, containingbuffer_count
elements.create_array
will be used to create new arrays when constructing the blocks and gradients, the default version will create data usingSimpleDataArray
. Seemts_create_array_callback_t()
for more information.
-
template<typename Buffer>
TensorMap metatensor::io::load_buffer(const Buffer &buffer, mts_create_array_callback_t create_array = details::default_create_array)# Load a previously saved
TensorMap
from the givenbuffer
.The
Buffer
template parameter would typically be astd::vector<uint8_t>
or astd::string
, but any container with contiguous data and anitem_type
with the same size as auint8_t
can work.
-
inline mts_status_t metatensor::details::default_create_array(const uintptr_t *shape_ptr, uintptr_t shape_count, mts_array_t *array)#
Default callback for data array creating in
TensorMap::load
, which will create aSimpleDataArray
.
Labels
serialization#
-
inline void metatensor::io::save(const std::string &path, const Labels &labels)#
Save
Labels
to the file atpath
.If the file exists, it will be overwritten.
-
template<typename Buffer = std::vector<uint8_t>>
Buffer metatensor::io::save_buffer(const Labels &labels)# Save
Labels
to an in-memory buffer.The
Buffer
template parameter can be set to any type that can be constructed from a pair of iterator overstd::vector<uint8_t>
.
-
inline Labels metatensor::io::load_labels(const std::string &path)#
Load previously saved
Labels
from the given path.
-
inline Labels metatensor::io::load_labels_buffer(const uint8_t *buffer, size_t buffer_count)#
Load previously saved
Labels
from the givenbuffer
, containingbuffer_count
elements.
-
template<typename Buffer>
Labels metatensor::io::load_labels_buffer(const Buffer &buffer)# Load a previously saved
Labels
from the givenbuffer
.The
Buffer
template parameter would typically be astd::vector<uint8_t>
or astd::string
, but any container with contiguous data and anitem_type
with the same size as auint8_t
can work.