Contents Menu Expand Light mode Dark mode Auto light/dark, in light mode Auto light/dark, in dark mode Skip to content
Metatensor
Light Logo Dark Logo
  • Metatensor’s goals
  • Installation
  • Core classes
    • Overview
    • Python API reference
      • TensorMap
      • TensorBlock
      • Labels
      • Serialization
      • Data arrays
      • Miscellaneous
    • C++ API reference
      • TensorMap
      • Labels
      • TensorBlock
      • Data arrays
      • Miscellaneous
    • C API reference
      • TensorMap
      • Labels
      • TensorBlock
      • Data arrays
      • Miscellaneous
    • Rust API reference
    • Tutorials
      • First steps with metatensor
      • Handling sparsity
      • Managing gradients
    • Changelog
  • Operations
    • Operations and PyTorch
    • API reference
      • Creation operations
        • empty_like()
        • ones_like()
        • zeros_like()
        • random_like()
        • block_from_array()
      • Linear algebra
        • dot()
        • lstsq()
        • solve()
      • Logic function
        • allclose()
        • equal()
        • equal_metadata()
        • is_contiguous()
      • Manipulation operations
        • detach()
        • drop_blocks()
        • filter_blocks()
        • join()
        • make_contiguous()
        • manipulate dimension
        • one_hot()
        • remove_gradients()
        • requires_grad()
        • samples reduction
        • slice()
        • split()
      • Mathematical functions
        • abs()
        • add()
        • divide()
        • multiply()
        • pow()
        • subtract()
      • Set operations
        • unique_metadata()
        • sort()
      • Checks
    • Changelog
  • TorchScript backend
    • API reference
      • TensorMap
      • TensorBlock
      • Labels
      • Serialization
      • TorchScript C++ API reference
        • TensorMap
        • TensorBlock
        • Labels
        • Miscellaneous
    • Changelog
  • Learning utilities
    • API reference
      • Data utilites
      • Neural Network
    • Tutorials
      • Datasets and data loaders
      • Using IndexedDataset
    • Changelog
  • Atomistic applications
    • Overview
    • API reference
      • Systems
      • Models
        • Exporting models
        • Information about models
      • Atomic Simulation Environment (ASE) integration
      • Serialization
      • C++ API reference
        • Systems
        • Models
    • Standard model outputs
      • Energy
      • Features
    • Simulation engines
      • ASE
      • Chemiscope
      • i-PI
      • LAMMPS
      • PLUMED
    • Tutorials
      • Exporting a model
      • Running Molecular Dynamics with ASE
      • Creating models that use neighbor lists
      • Profiling your models
  • Developer documentation
    • Getting started
    • Code organization
    • Version number management
Back to top
View this page

Tutorials¶

Exporting a model

Exporting a model

Running Molecular Dynamics with ASE

Running Molecular Dynamics with ASE

Creating models that use neighbor lists

Creating models that use neighbor lists

Profiling your models

Profiling your models

Download all examples in Python source code: atomistic_python.zip

Download all examples in Jupyter notebooks: atomistic_jupyter.zip

Gallery generated by Sphinx-Gallery

Next
Exporting a model
Previous
PLUMED
Copyright © 2025, the metatensor developers
Made with Sphinx and @pradyunsg's Furo