Models#
- 
torch::jit::Module metatensor_torch::load_atomistic_model(std::string path, c10::optional<c10::Device> device = c10::nullopt)#
 Check and then load the metatensor atomistic model at the given
path.
- 
void metatensor_torch::check_atomistic_model(std::string path)#
 Check the exported metatensor atomistic model at the given
path, and warn/error as required.
- 
using metatensor_torch::ModelOutput = torch::intrusive_ptr<ModelOutputHolder>#
 TorchScript will always manipulate
ModelOutputHolderthrough atorch::intrusive_ptr
- 
class ModelOutputHolder : public CustomClassHolder#
 Description of one of the quantity a model can compute.
Public Functions
- 
inline ModelOutputHolder(std::string quantity_, std::string unit_, bool per_atom_, std::vector<std::string> explicit_gradients_)#
 Initialize
ModelOutputwith the given data.
- 
std::string to_json() const#
 Serialize a
ModelOutputto a JSON string.
Public Members
- 
std::string quantity#
 quantity of the output (e.g. energy, dipole, …). If this is an empty string, no unit conversion will be performed.
- 
std::string unit#
 unit of the output. If this is an empty string, no unit conversion will be performed.
- 
bool per_atom = false#
 is the output defined per-atom or for the overall structure
- 
std::vector<std::string> explicit_gradients#
 Which gradients should be computed eagerly and stored inside the output
TensorMap
Public Static Functions
- 
static ModelOutput from_json(const std::string &json)#
 Load a serialized
ModelOutputfrom a JSON string.
- 
inline ModelOutputHolder(std::string quantity_, std::string unit_, bool per_atom_, std::vector<std::string> explicit_gradients_)#
 
- 
using metatensor_torch::ModelCapabilities = torch::intrusive_ptr<ModelCapabilitiesHolder>#
 TorchScript will always manipulate
ModelCapabilitiesHolderthrough atorch::intrusive_ptr
- 
class ModelCapabilitiesHolder : public CustomClassHolder#
 Description of a model capabilities, i.e. everything a model can do.
Public Functions
- 
inline ModelCapabilitiesHolder(std::string length_unit_, std::vector<int64_t> species_, torch::Dict<std::string, ModelOutput> outputs_)#
 Initialize
ModelCapabilitieswith the given data.
- 
std::string to_json() const#
 Serialize a
ModelCapabilitiesto a JSON string.
Public Members
- 
std::string length_unit#
 unit of lengths the model expects as input
- 
std::vector<int64_t> species#
 which atomic species the model can handle
- 
torch::Dict<std::string, ModelOutput> outputs#
 all possible outputs from this model and corresponding settings
Public Static Functions
- 
static ModelCapabilities from_json(const std::string &json)#
 Load a serialized
ModelCapabilitiesfrom a JSON string.
- 
inline ModelCapabilitiesHolder(std::string length_unit_, std::vector<int64_t> species_, torch::Dict<std::string, ModelOutput> outputs_)#
 
- 
using metatensor_torch::ModelEvaluationOptions = torch::intrusive_ptr<ModelEvaluationOptionsHolder>#
 TorchScript will always manipulate
ModelEvaluationOptionsHolderthrough atorch::intrusive_ptr
- 
class ModelEvaluationOptionsHolder : public CustomClassHolder#
 Options requested by the simulation engine when running with a model.
Public Functions
- 
ModelEvaluationOptionsHolder(std::string length_unit, torch::Dict<std::string, ModelOutput> outputs, torch::optional<TorchLabels> selected_atoms)#
 Initialize
ModelEvaluationOptionswith the given data.
- 
inline torch::optional<TorchLabels> get_selected_atoms() const#
 Only run the calculation for a selected subset of atoms. If this is set to
None, run the calculation on all atoms. If this is a set ofLabels, it will have two dimensions named"system"and"atom", containing the 0-based indices of all the atoms in the selected subset.
- 
void set_selected_atoms(torch::optional<TorchLabels> selected_atoms)#
 Setter for
selected_atoms
- 
std::string to_json() const#
 Serialize a
ModelEvaluationOptionsto a JSON string.
Public Members
- 
std::string length_unit#
 unit of lengths the engine uses for the model input
- 
torch::Dict<std::string, ModelOutput> outputs#
 requested outputs for this run and corresponding settings
Public Static Functions
- 
static ModelEvaluationOptions from_json(const std::string &json)#
 Load a serialized
ModelEvaluationOptionsfrom a JSON string.
- 
ModelEvaluationOptionsHolder(std::string length_unit, torch::Dict<std::string, ModelOutput> outputs, torch::optional<TorchLabels> selected_atoms)#