Changelog¶
All notable changes to metatensor-learn are documented here, following the keep a changelog format. This project follows Semantic Versioning.
Unreleased¶
Added¶
Added
metatensor.learn.nn.EquivariantTransformation
to apply anytorch.nn.Module
to invariants computed from the norm over components of covariant blocks. The transformed invariants are then elementwise multiplied back to the covariant blocks. For invariant blocks, thetorch.nn.Module
is applied as is (#744)
Changed¶
metatensor.learn.nn
modulesInvariantTanh
,InvariantSiLU
,InvariantReLU
,InvariantLayerNorm
, andEquivariantLinear
have removed and replaced parameter.invariant_key_idxs
is replaced byinvariant_keys
, aLabels
object that selects for invariant blocks.metatensor.learn.nn
modulesLayerNorm
,InvariantLayerNorm
,Linear
, andEquivariantLinear
have altered accepted types for certain parameters. Parameterseps
,elementwise_affine
,bias
, andmean
for the layer norm modules, andbias
for the linear modules are affected. Previously these could be passed as list, but now can only be passed as a single value. For greater control over modules applied to individual blocks, users are encouraged to use theModuleMap
module frommetatensor.learn.nn
.
Version 0.2.3 - 2024-08-28¶
Changed¶
We now require Python >= 3.9
Dataset and DataLoader can now handle fields with a name which is not a valid Python identifier.
Version 0.2.2 - 2024-05-16¶
Added¶
Added torch-style activation function module maps to
metatensor.learn.nn
:ReLU
,InvariantReLU
,SiLU
, andInvariantSiLU
(#597)Added torch-style neural network module maps to
metatensor.learn.nn
:LayerNorm
,InvariantLayerNorm
,EquivariantLinear
,Sequential
,Tanh
, andInvariantTanh
(#513)
Fixed¶
metatensor.learn.nn
modulesLayerNorm
andInvariantLayerNorm
now applies sample-independent transformations to input tensors.Set correct device for output of when torch default device is different than input device (#595)
Version 0.2.1 - 2024-03-01¶
Changed¶
metatensor-learn
is no longer re-exported frommetatensor
andmetatensor.torch
, all functions are still available insidemetatensor.learn
andmetatensor.torch.learn
.
Fixed¶
Make sure the
Dataset
class is iterable (#500)
Version 0.2.0 - 2024-02-07¶
Changed¶
Pluralization removed for special kwarg
sample_ids
ofIndexedDataset
->sample_id
, and provided collate functionsgroup
andgroup_and_join
updated accordingly.
Fixed¶
Removal of usage of Labels.range in nn modules to support torch.jit.save (#410)
Version 0.1.0 - 2024-01-26¶
Added¶
ModuleMap
andLinear
modules, following torch.nn.ModuleDict and torch.nn.Linear in PyTorch but adapted forTensorMap
’s (#427)Dataset
andDataLoader
facilities, following the corresponding classes in PyTorch (#428)