# Changelog All notable changes to metatensor-learn are documented here, following the [keep a changelog](https://keepachangelog.com/en/1.1.0/) format. This project follows [Semantic Versioning](https://semver.org/spec/v2.0.0.html). ## [Unreleased](https://github.com/metatensor/metatensor/) ## [Version 0.3.0](https://github.com/metatensor/metatensor/releases/tag/metatensor-learn-v0.3.0) - 2024-10-30 ### Added - Added `metatensor.learn.nn.EquivariantTransformation` to apply any `torch.nn.Module` to invariants computed from the norm over components of covariant blocks. The transformed invariants are then elementwise multiplied back to the covariant blocks. For invariant blocks, the `torch.nn.Module` is applied as is (#744) ### Changed - `metatensor.learn.nn` modules `InvariantTanh`, `InvariantSiLU`, `InvariantReLU`, `InvariantLayerNorm`, and `EquivariantLinear` have removed and replaced parameter. `invariant_key_idxs` is replaced by `invariant_keys`, a `Labels` object that selects for invariant blocks. - `metatensor.learn.nn` modules `LayerNorm`, `InvariantLayerNorm`, `Linear`, and `EquivariantLinear` have altered accepted types for certain parameters. Parameters `eps`, `elementwise_affine`, `bias`, and `mean` for the layer norm modules, and `bias` for the linear modules are affected. Previously these could be passed as list, but now can only be passed as a single value. For greater control over modules applied to individual blocks, users are encouraged to use the `ModuleMap` module from `metatensor.learn.nn`. ## [Version 0.2.3](https://github.com/metatensor/metatensor/releases/tag/metatensor-learn-v0.2.3) - 2024-08-28 ### Changed - We now require Python >= 3.9 - Dataset and DataLoader can now handle fields with a name which is not a valid Python identifier. ## [Version 0.2.2](https://github.com/metatensor/metatensor/releases/tag/metatensor-learn-v0.2.2) - 2024-05-16 ### Added - Added torch-style activation function module maps to `metatensor.learn.nn`: `ReLU`, `InvariantReLU`, `SiLU`, and `InvariantSiLU` (#597) - Added torch-style neural network module maps to `metatensor.learn.nn`: `LayerNorm`, `InvariantLayerNorm`, `EquivariantLinear`, `Sequential`, `Tanh`, and `InvariantTanh` (#513) ### Fixed - `metatensor.learn.nn` modules `LayerNorm` and `InvariantLayerNorm` now applies sample-independent transformations to input tensors. - Set correct device for output of when torch default device is different than input device (#595) ## [Version 0.2.1](https://github.com/metatensor/metatensor/releases/tag/metatensor-learn-v0.2.1) - 2024-03-01 ### Changed - `metatensor-learn` is no longer re-exported from `metatensor` and `metatensor.torch`, all functions are still available inside `metatensor.learn` and `metatensor.torch.learn`. ### Fixed - Make sure the `Dataset` class is iterable (#500) ## [Version 0.2.0](https://github.com/metatensor/metatensor/releases/tag/metatensor-learn-v0.2.0) - 2024-02-07 ### Changed - Pluralization removed for special kwarg `sample_ids` of `IndexedDataset` -> `sample_id`, and provided collate functions `group` and `group_and_join` updated accordingly. ### Fixed - Removal of usage of Labels.range in nn modules to support torch.jit.save (#410) ## [Version 0.1.0](https://github.com/metatensor/metatensor/releases/tag/metatensor-learn-v0.1.0) - 2024-01-26 ### Added - `ModuleMap` and `Linear` modules, following torch.nn.ModuleDict and torch.nn.Linear in PyTorch but adapted for `TensorMap`'s (#427) - `Dataset` and `DataLoader` facilities, following the corresponding classes in PyTorch (#428)