.. _python-api-torch: API reference ============= .. note:: This is the documentation for ``metatensor-torch`` version |metatensor-torch-version|. For other versions, look in the following pages: .. version-list:: :tag-prefix: metatensor-torch-v :url-suffix: torch/reference/index.html .. version:: 0.6.1 .. version:: 0.6.0 .. version:: 0.5.5 .. version:: 0.5.4 .. version:: 0.5.3 .. version:: 0.5.2 .. version:: 0.5.1 .. version:: 0.5.0 .. version:: 0.4.0 .. version:: 0.3.0 .. version:: 0.2.1 .. version:: 0.2.0 :url-suffix: reference/torch/index.html .. version:: 0.1.0 :url-suffix: reference/torch/index.html .. py:currentmodule:: metatensor.torch The classes and functions in the TorchScript API are kept as close as possible to the classes and functions of the pure Python API, with the explicit goal that changing from .. code-block:: python import metatensor from metatensor import TensorMap, TensorBlock, Labels to .. code-block:: python import metatensor.torch as metatensor from metatensor.torch import TensorMap, TensorBlock, Labels should be 80% of the work required to make a model developed in Python with :py:mod:`metatensor.operations` compatible with TorchScript. In particular, all the :ref:`operations ` are also available in the ``metatensor.torch`` module under the same name. All the functions have the same behavior, but the versions in ``metatensor.torch`` are annotated with the types from ``metatensor.torch``, and compatible with TorchScript compilation. For example :py:func:`metatensor.add()` is available as ``metatensor.torch.add()``. The :ref:`learn ` module is also re-exported inside ``metatensor.torch.learn``, with the same functionalities as ``metatensor.learn``. The documentation for the usual core classes of metatensor can be found in the following pages: .. toctree:: :maxdepth: 1 tensor block labels serialization .. this is linked directly from torch/index.rst .. toctree:: :maxdepth: 1 :hidden: cxx/index