Changelog¶
All notable changes to metatensor-learn are documented here, following the keep a changelog format. This project follows Semantic Versioning.
Unreleased¶
Changed¶
metatensor.learn.nnmodulesInvariantTanh,InvariantSiLU,InvariantReLU,InvariantLayerNorm, andEquivariantLinearhave removed and replaced parameter.invariant_key_idxsis replaced byinvariant_keys, aLabelsobject that selects for invariant blocks.metatensor.learn.nnmodulesLayerNorm,InvariantLayerNorm,Linear, andEquivariantLinearhave altered accepted types for certain parameters. Parameterseps,elementwise_affine,bias, andmeanfor the layer norm modules, andbiasfor the linear modules are affected. Previously these could be passed as list, but now can only be passed as a single value. For greater control over modules applied to individual blocks, users are encouraged to use theModuleMapmodule frommetatensor.learn.nn.
Version 0.2.3 - 2024-08-28¶
Changed¶
We now require Python >= 3.9
Dataset and DataLoader can now handle fields with a name which is not a valid Python identifier.
Version 0.2.2 - 2024-05-16¶
Added¶
Added torch-style activation function module maps to
metatensor.learn.nn:ReLU,InvariantReLU,SiLU, andInvariantSiLU(#597)Added torch-style neural network module maps to
metatensor.learn.nn:LayerNorm,InvariantLayerNorm,EquivariantLinear,Sequential,Tanh, andInvariantTanh(#513)
Fixed¶
metatensor.learn.nnmodulesLayerNormandInvariantLayerNormnow applies sample-independent transformations to input tensors.Set correct device for output of when torch default device is different than input device (#595)
Version 0.2.1 - 2024-03-01¶
Changed¶
metatensor-learnis no longer re-exported frommetatensorandmetatensor.torch, all functions are still available insidemetatensor.learnandmetatensor.torch.learn.
Fixed¶
Make sure the
Datasetclass is iterable (#500)
Version 0.2.0 - 2024-02-07¶
Changed¶
Pluralization removed for special kwarg
sample_idsofIndexedDataset->sample_id, and provided collate functionsgroupandgroup_and_joinupdated accordingly.
Fixed¶
Removal of usage of Labels.range in nn modules to support torch.jit.save (#410)
Version 0.1.0 - 2024-01-26¶
Added¶
ModuleMapandLinearmodules, following torch.nn.ModuleDict and torch.nn.Linear in PyTorch but adapted forTensorMap’s (#427)DatasetandDataLoaderfacilities, following the corresponding classes in PyTorch (#428)