Neural Network

Modules

class metatensor.learn.nn.ModuleMap(in_keys: Labels, modules: List[Module], out_properties: List[Labels] | None = None)[source]

A class that imitates torch.nn.ModuleDict. In its forward function the module at position i given on construction by :param modules: is applied to the tensor block that corresponding to the`i`th key in :param in_keys:.

Parameters:
  • in_keys (Labels) – A metatensor.Labels object with the keys of the module map that are assumed to be in the input tensor map in the forward() function.

  • modules (List[Module]) – A sequence of modules applied in the forward() function on the input TensorMap. Each module corresponds to one LabelsEntry in :param in_keys: that determines on which TensorBlock the module is applied on. :param modules: and :param in_keys: must match in length.

  • out_properties (List[Labels] | None) –

    A list of labels that is used to determine the properties labels of the output. Because a module could change the number of properties, the labels of the properties cannot be persevered. By default the output properties are relabeled using Labels.range with “_” as key.

    >>> import torch
    >>> import numpy as np
    >>> from copy import deepcopy
    >>> from metatensor import Labels, TensorBlock, TensorMap
    >>> from metatensor.learn.nn import ModuleMap
    

    Create simple block

    >>> block_1 = TensorBlock(
    ...     values=torch.tensor(
    ...         [
    ...             [1.0, 2.0, 4.0],
    ...             [3.0, 5.0, 6.0],
    ...         ]
    ...     ),
    ...     samples=Labels(
    ...         ["system", "atom"],
    ...         np.array(
    ...             [
    ...                 [0, 0],
    ...                 [0, 1],
    ...             ]
    ...         ),
    ...     ),
    ...     components=[],
    ...     properties=Labels(["properties"], np.array([[0], [1], [2]])),
    ... )
    >>> block_2 = TensorBlock(
    ...     values=torch.tensor(
    ...         [
    ...             [5.0, 8.0, 2.0],
    ...             [1.0, 2.0, 8.0],
    ...         ]
    ...     ),
    ...     samples=Labels(
    ...         ["system", "atom"],
    ...         np.array(
    ...             [
    ...                 [0, 0],
    ...                 [0, 1],
    ...             ]
    ...         ),
    ...     ),
    ...     components=[],
    ...     properties=Labels(["properties"], np.array([[3], [4], [5]])),
    ... )
    >>> keys = Labels(names=["key"], values=np.array([[0], [1]]))
    >>> tensor = TensorMap(keys, [block_1, block_2])
    

    Create modules

    >>> linear = torch.nn.Linear(3, 1, bias=False)
    >>> with torch.no_grad():
    ...     _ = linear.weight.copy_(torch.tensor([1.0, 1.0, 1.0]))
    ...
    >>> modules = [linear, deepcopy(linear)]
    >>> # you could also extend the module by some nonlinear activation function
    

    Create ModuleMap from this ModucDict and apply it

    >>> module_map = ModuleMap(tensor.keys, modules)
    >>> out = module_map(tensor)
    >>> out
    TensorMap with 2 blocks
    keys: key
           0
           1
    >>> out[0].values
    tensor([[ 7.],
            [14.]], grad_fn=<MmBackward0>)
    >>> out[1].values
    tensor([[15.],
            [11.]], grad_fn=<MmBackward0>)
    

    Let’s look at the metadata

    >>> tensor[0]
    TensorBlock
        samples (2): ['system', 'atom']
        components (): []
        properties (3): ['properties']
        gradients: None
    >>> out[0]
    TensorBlock
        samples (2): ['system', 'atom']
        components (): []
        properties (1): ['_']
        gradients: None
    

    It got completely lost because we cannot know in general what the output is. You can add in the initialization of the ModuleMap a TensorMap that contains the intended output Labels.

Initialize internal Module state, shared by both nn.Module and ScriptModule.

classmethod from_module(in_keys: Labels, module: Module, out_properties: List[Labels] | None = None)[source]

A wrapper around one torch.nn.Module applying the same type of module on each tensor block.

Parameters:
  • in_keys (Labels) – A metatensor.Labels object that determines the keys of the module map that are ass the TensorMaps that are assumed to be in the input tensor map in the forward() function.

  • module (Module) – The module that is applied on each block.

  • out_properties (List[Labels] | None) – A list of labels that is used to determine the properties labels of the output. Because a module could change the number of properties, the labels of the properties cannot be persevered. By default the output properties are relabeled using Labels.range with “_” as key.

>>> import torch
>>> import numpy as np
>>> from metatensor import Labels, TensorBlock, TensorMap
>>> block_1 = TensorBlock(
...     values=torch.tensor(
...         [
...             [1.0, 2.0, 4.0],
...             [3.0, 5.0, 6.0],
...         ]
...     ),
...     samples=Labels(
...         ["system", "atom"],
...         np.array(
...             [
...                 [0, 0],
...                 [0, 1],
...             ]
...         ),
...     ),
...     components=[],
...     properties=Labels(["properties"], np.array([[0], [1], [2]])),
... )
>>> block_2 = TensorBlock(
...     values=torch.tensor(
...         [
...             [5.0, 8.0, 2.0],
...             [1.0, 2.0, 8.0],
...         ]
...     ),
...     samples=Labels(
...         ["system", "atom"],
...         np.array(
...             [
...                 [0, 0],
...                 [0, 1],
...             ]
...         ),
...     ),
...     components=[],
...     properties=Labels(["properties"], np.array([[0], [1], [2]])),
... )
>>> keys = Labels(names=["key"], values=np.array([[0], [1]]))
>>> tensor = TensorMap(keys, [block_1, block_2])
>>> linear = torch.nn.Linear(3, 1, bias=False)
>>> with torch.no_grad():
...     _ = linear.weight.copy_(torch.tensor([1.0, 1.0, 1.0]))
...
>>> # you could also extend the module by some nonlinear activation function
>>> from metatensor.learn.nn import ModuleMap
>>> module_map = ModuleMap.from_module(tensor.keys, linear)
>>> out = module_map(tensor)
>>> out[0].values
tensor([[ 7.],
        [14.]], grad_fn=<MmBackward0>)
>>> out[1].values
tensor([[15.],
        [11.]], grad_fn=<MmBackward0>)
forward(tensor: TensorMap) TensorMap[source]

Apply the modules on each block in tensor. tensor must have the same set of keys as the modules used to initialize this ModuleMap.

Parameters:

tensor (TensorMap) – input tensor map

Return type:

TensorMap

get_module(key: LabelsEntry)[source]
Parameters:

key (LabelsEntry) – key of module which should be returned

Return module:

returns he torch.nn.Module corresponding to the :param key:

property in_keys: Labels

A list of labels that defines the initialized keys with corresponding modules of this module map.

property out_properties: None | List[Labels]

A list of labels that is used to determine properties labels of the output of forward function.

repr_as_module_dict() str[source]

Returns a string that is easier to read that the standard __repr__ showing the mapping from label entry key to module.

Return type:

str

class metatensor.learn.nn.Sequential(in_keys: Labels, *args: List[ModuleMap])[source]

A sequential model that applies a list of ModuleMaps to the input in order.

Parameters:
  • in_keys (Labels) – The keys that are assumed to be in the input tensor map in the forward() function.

  • args (List[ModuleMap]) – A list of ModuleMap objects that will be applied in order to the input tensor map in the forward() function.

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(tensor: TensorMap) TensorMap[source]

Apply the transformations to the input tensor map tensor.

Parameters:

tensor (TensorMap)

Return type:

TensorMap

class metatensor.learn.nn.Linear(in_keys: Labels, in_features: int | List[int], out_features: List[int] | int | None = None, out_properties: List[Labels] | None = None, *, bias: bool = True, device: device | None = None, dtype: dtype | None = None)[source]

Module similar to torch.nn.Linear that works with metatensor.torch.TensorMap.

Applies a linear transformation to each block of a TensorMap passed to its forward method, indexed by :param in_keys:.

Refer to the :py:class`torch.nn.Linear` documentation for a more detailed description of the other parameters.

Each parameter is passed as a single value of its expected type, which is used as the parameter for all blocks.

Parameters:
  • in_keys (Labels) – Labels, the keys that are assumed to be in the input tensor map in the forward() method.

  • in_features (int | List[int]) – int or list of int, the number of input features for each block. If passed as a single value, the same feature size is taken for all blocks.

  • out_features (List[int] | int | None) – int or lint of int, the number of output features for each block. If passed as a single value, the same feature size is taken for all blocks.

  • out_properties (List[Labels] | None) – list of :py:class`Labels` (optional), the properties labels of the output. By default the output properties are relabeled using Labels.range. If provided, :param out_features: can be inferred and need not be provided.

  • bias (bool)

  • device (device | None)

  • dtype (dtype | None)

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(tensor: TensorMap) TensorMap[source]

Apply the transformation to the input tensor map tensor.

Parameters:

tensor (TensorMap) – TensorMap with the input tensor to be transformed.

Returns:

TensorMap

Return type:

TensorMap

class metatensor.learn.nn.EquivariantLinear(in_keys: Labels, in_features: int | List[int], out_features: List[int] | int | None = None, out_properties: List[Labels] | None = None, invariant_keys: Labels | None = None, *, bias: bool = True, device: device | None = None, dtype: dtype | None = None)[source]

Module similar to torch.nn.Linear that works with equivariant metatensor.torch.TensorMap objects.

Applies a linear transformation to each block of a TensorMap passed to its forward method, indexed by :param in_keys:.

Refer to the :py:class`torch.nn.Linear` documentation for a more detailed description of the other parameters.

For EquivariantLinear, by contrast to Linear, the parameter :param bias: is only applied to modules corresponding to invariant blocks, i.e. keys in :param in_keys: that correspond to the selection in :param invariant_keys:.

Parameters:
  • in_keys (Labels) – Labels, the keys that are assumed to be in the input tensor map in the forward() method.

  • in_features (int | List[int]) – int or list of int, the number of input features for each block. If passed as a single value, the same feature size is taken for all blocks.

  • out_features (List[int] | int | None) – int or lint of int, the number of output features for each block. If passed as a single value, the same feature size is taken for all blocks.

  • out_properties (List[Labels] | None) – list of :py:class`Labels` (optional), the properties labels of the output. By default the output properties are relabeled using Labels.range. If provided, :param out_features: can be inferred and need not be provided.

  • invariant_keys (Labels | None) – a Labels object that is used to select the invariant keys from in_keys. If not provided, the invariant keys are assumed to be those where key dimensions ["o3_lambda", "o3_sigma"] are equal to [0, 1].

  • bias (bool)

  • device (device | None)

  • dtype (dtype | None)

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(tensor: TensorMap) TensorMap[source]

Apply the transformation to the input tensor map tensor.

Parameters:

tensor (TensorMap) – TensorMap with the input tensor to be transformed.

Returns:

TensorMap

Return type:

TensorMap

class metatensor.learn.nn.Tanh(in_keys: Labels, out_properties: Labels | None = None)[source]

Module similar to torch.nn.Tanh that works with metatensor.torch.TensorMap objects.

Applies a hyperbolic tangent transformation to each block of a TensorMap passed to its forward method, indexed by :param in_keys:.

Refer to the :py:class`torch.nn.Tanh` documentation for a more detailed description of the parameters.

Parameters:
  • in_keys (Labels) – Labels, the keys that are assumed to be in the input tensor map in the forward() method.

  • out_properties (Labels | None) – list of :py:class`Labels` (optional), the properties labels of the output. By default the output properties are relabeled using Labels.range.

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(tensor: TensorMap) TensorMap[source]

Apply the transformation to the input tensor map tensor.

Note: currently not supporting gradients.

Parameters:

tensor (TensorMap) – TensorMap with the input tensor to be transformed.

Returns:

TensorMap

Return type:

TensorMap

class metatensor.learn.nn.InvariantTanh(in_keys: Labels, out_properties: Labels | None = None, invariant_keys: Labels | None = None)[source]

Module similar to torch.nn.Tanh that works with metatensor.torch.TensorMap objects, applying the transformation only to the invariant blocks.

Applies a hyperbolic tangent transformation to each invariant block of a TensorMap passed to its forward() method. These are indexed by the keys in :param in_keys: that correspond to the selection passed in :param invariant_keys:.

Refer to the :py:class`torch.nn.Tanh` documentation for a more detailed description of the parameters.

Parameters:
  • in_keys (Labels) – Labels, the keys that are assumed to be in the input tensor map in the forward() method.

  • out_properties (Labels | None) – list of :py:class`Labels` (optional), the properties labels of the output. By default the output properties are relabeled using Labels.range.

  • invariant_keys (Labels | None) – a Labels object that is used to select the invariant keys from in_keys. If not provided, the invariant keys are assumed to be those where key dimensions ["o3_lambda", "o3_sigma"] are equal to [0, 1].

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(tensor: TensorMap) TensorMap[source]

Apply the transformation to the input tensor map tensor.

Note: currently not supporting gradients.

Parameters:

tensor (TensorMap) – TensorMap with the input tensor to be transformed.

Returns:

TensorMap

Return type:

TensorMap

class metatensor.learn.nn.ReLU(in_keys: Labels, out_properties: Labels | None = None, *, in_place: bool = False)[source]

Module similar to torch.nn.ReLU that works with metatensor.torch.TensorMap objects.

Applies a rectified linear unit transformation transformation to each block of a TensorMap passed to its forward method, indexed by :param in_keys:.

Refer to the :py:class`torch.nn.ReLU` documentation for a more detailed description of the parameters.

Parameters:
  • in_keys (Labels) – Labels, the keys that are assumed to be in the input tensor map in the forward() method.

  • out_properties (Labels | None) – list of :py:class`Labels` (optional), the properties labels of the output. By default the output properties are relabeled using Labels.range.

  • in_place (bool)

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(tensor: TensorMap) TensorMap[source]

Apply the transformation to the input tensor map tensor.

Note: currently not supporting gradients.

Parameters:

tensor (TensorMap) – TensorMap with the input tensor to be transformed.

Returns:

TensorMap

Return type:

TensorMap

class metatensor.learn.nn.InvariantReLU(in_keys: Labels, out_properties: Labels | None = None, invariant_keys: Labels | None = None, *, in_place: bool = False)[source]

Module similar to torch.nn.ReLU that works with metatensor.torch.TensorMap objects, applying the transformation only to the invariant blocks.

Applies a rectified linear unit transformation to each invariant block of a TensorMap passed to its forward() method. These are indexed by the keys in :param in_keys: that correspond to the selection passed in :param invariant_keys:.

Refer to the :py:class`torch.nn.ReLU` documentation for a more detailed description of the parameters.

Parameters:
  • in_keys (Labels) – Labels, the keys that are assumed to be in the input tensor map in the forward() method.

  • out_properties (Labels | None) – list of :py:class`Labels` (optional), the properties labels of the output. By default the output properties are relabeled using Labels.range.

  • invariant_keys (Labels | None) – a Labels object that is used to select the invariant keys from in_keys. If not provided, the invariant keys are assumed to be those where key dimensions ["o3_lambda", "o3_sigma"] are equal to [0, 1].

  • in_place (bool)

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(tensor: TensorMap) TensorMap[source]

Apply the transformation to the input tensor map tensor.

Note: currently not supporting gradients.

Parameters:

tensor (TensorMap) – TensorMap with the input tensor to be transformed.

Returns:

TensorMap

Return type:

TensorMap

class metatensor.learn.nn.SiLU(in_keys: Labels, out_properties: Labels | None = None, *, in_place: bool = False)[source]

Module similar to torch.nn.SiLU that works with metatensor.torch.TensorMap objects.

Applies a sigmoid linear unit transformation transformation to each block of a TensorMap passed to its forward method, indexed by :param in_keys:.

Refer to the :py:class`torch.nn.SiLU` documentation for a more detailed description of the parameters.

Parameters:
  • in_keys (Labels) – Labels, the keys that are assumed to be in the input tensor map in the forward() method.

  • out_properties (Labels | None) – list of :py:class`Labels` (optional), the properties labels of the output. By default the output properties are relabeled using Labels.range.

  • in_place (bool)

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(tensor: TensorMap) TensorMap[source]

Apply the transformation to the input tensor map tensor.

Note: currently not supporting gradients.

Parameters:

tensor (TensorMap) – TensorMap with the input tensor to be transformed.

Returns:

TensorMap

Return type:

TensorMap

class metatensor.learn.nn.InvariantSiLU(in_keys: Labels, out_properties: Labels | None = None, invariant_keys: Labels | None = None, *, in_place: bool = False)[source]

Module similar to torch.nn.SiLU that works with metatensor.torch.TensorMap objects, applying the transformation only to the invariant blocks.

Applies a sigmoid linear unit transformation to each invariant block of a TensorMap passed to its forward() method. These are indexed by the keys in :param in_keys: that correspond to the selection passed in :param invariant_keys:.

Refer to the :py:class`torch.nn.SiLU` documentation for a more detailed description of the parameters.

Parameters:
  • in_keys (Labels) – Labels, the keys that are assumed to be in the input tensor map in the forward() method.

  • out_properties (Labels | None) – list of :py:class`Labels` (optional), the properties labels of the output. By default the output properties are relabeled using Labels.range.

  • invariant_keys (Labels | None) – a Labels object that is used to select the invariant keys from in_keys. If not provided, the invariant keys are assumed to be those where key dimensions ["o3_lambda", "o3_sigma"] are equal to [0, 1].

  • in_place (bool)

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(tensor: TensorMap) TensorMap[source]

Apply the transformation to the input tensor map tensor.

Note: currently not supporting gradients.

Parameters:

tensor (TensorMap) – TensorMap with the input tensor to be transformed.

Returns:

TensorMap

Return type:

TensorMap

class metatensor.learn.nn.LayerNorm(in_keys: Labels, in_features: List[int], out_properties: List[Labels] | None = None, *, eps: float = 1e-05, elementwise_affine: bool = True, bias: bool = True, mean: bool = True, device: device | None = None, dtype: dtype | None = None)[source]

Module similar to torch.nn.LayerNorm that works with metatensor.torch.TensorMap objects.

Applies a layer normalization to each block of a TensorMap passed to its forward() method, indexed by :param in_keys:.

The main difference from torch.nn.LayerNorm is that there is no normalized_shape parameter. Instead, the standard deviation and mean (if applicable) are calculated over all dimensions except the samples (first) dimension of each TensorBlock.

The extra parameter :param mean: controls whether or not the mean over these dimensions is subtracted from the input tensor in the transformation.

Refer to the :py:class`torch.nn.LayerNorm` documentation for a more detailed description of the other parameters.

Each parameter is passed as a single value of its expected type, which is used as the parameter for all blocks.

Parameters:
  • in_keys (Labels) – Labels, the keys that are assumed to be in the input tensor map in the forward() method.

  • in_features (List[int]) – list of int, the number of features in the input tensor for each block indexed by the keys in :param in_keys:. If passed as a single value, the same number of features is assumed for all blocks.

  • out_properties (List[Labels] | None) – list of :py:class`Labels` (optional), the properties labels of the output. By default (if none) the output properties are relabeled using Labels.range.

  • eps (float)

  • elementwise_affine (bool)

  • bias (bool)

  • mean (bool)

  • device (device | None)

  • dtype (dtype | None)

Mean bool:

whether or not to subtract the mean over all dimensions except the samples (first) dimension of each block of the input passed to forward().

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(tensor: TensorMap) TensorMap[source]

Apply the transformation to the input tensor map tensor.

Parameters:

tensor (TensorMap) – TensorMap with the input tensor to be transformed.

Returns:

TensorMap

Return type:

TensorMap

class metatensor.learn.nn.InvariantLayerNorm(in_keys: Labels, in_features: List[int], out_properties: List[Labels] | None = None, invariant_keys: Labels | None = None, *, eps: float = 1e-05, elementwise_affine: bool = True, bias: bool = True, mean: bool = True, device: device | None = None, dtype: dtype | None = None)[source]

Module similar to torch.nn.LayerNorm that works with metatensor.torch.TensorMap objects, applying the transformation only to the invariant blocks.

Applies a layer normalization to each invariant block of a TensorMap passed to forward() method. These are indexed by the keys in :param in_keys: that correspond to the selection passed in :param invariant_keys:.

The main difference from torch.nn.LayerNorm is that there is no normalized_shape parameter. Instead, the standard deviation and mean (if applicable) are calculated over all dimensions except the samples (first) dimension of each TensorBlock.

The extra parameter :param mean: controls whether or not the mean over these dimensions is subtracted from the input tensor in the transformation.

Refer to the :py:class`torch.nn.LayerNorm` documentation for a more detailed description of the other parameters.

Each parameter is passed as a single value of its expected type, which is used as the parameter for all blocks.

Parameters:
  • in_keys (Labels) – Labels, the keys that are assumed to be in the input tensor map in the forward() method.

  • in_features (List[int]) – list of int, the number of features in the input tensor for each block indexed by the keys in :param in_keys:. If passed as a single value, the same number of features is assumed for all blocks.

  • out_properties (List[Labels] | None) – list of :py:class`Labels` (optional), the properties labels of the output. By default (if none) the output properties are relabeled using Labels.range.

  • invariant_keys (Labels | None) – a Labels object that is used to select the invariant keys from in_keys. If not provided, the invariant keys are assumed to be those where key dimensions ["o3_lambda", "o3_sigma"] are equal to [0, 1].

  • eps (float)

  • elementwise_affine (bool)

  • bias (bool)

  • mean (bool)

  • device (device | None)

  • dtype (dtype | None)

Mean bool:

whether or not to subtract the mean over all dimensions except the samples (first) dimension of each block of the input passed to forward().

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(tensor: TensorMap) TensorMap[source]

Apply the layer norm to the input tensor map tensor.

Parameters:

tensor (TensorMap) – TensorMap with the input tensor to be transformed.

Returns:

TensorMap

Return type:

TensorMap