Source code for metatensor.torch.atomistic.model

import datetime
import hashlib
import json
import os
import platform
import shutil
import site
import warnings
from typing import Dict, List, Optional

import torch

from .. import Labels, TensorBlock, TensorMap
from .. import __version__ as metatensor_version
from . import (
    ModelCapabilities,
    ModelEvaluationOptions,
    ModelOutput,
    NeighborsListOptions,
    System,
)
from .units import KNOWN_QUANTITIES, Quantity


[docs] class MetatensorAtomisticModel(torch.nn.Module): """ :py:class:`MetatensorAtomisticModel` is the main entry point for atomistic machine learning based on metatensor. It is the interface between custom, user-defined models and simulation engines. Users should wrap their models with this class, and use :py:meth:`export()` to save and export the model to a file. The exported models can then be loaded by a simulation engine to compute properties of atomistic systems. When wrapping a ``module``, you should declare what the model is capable of (using :py:class:`ModelCapabilities`). This includes what units the model expects as input and what properties the model can compute (using :py:class:`ModelOutput`). The simulation engine will then ask the model to compute some subset of these properties (through a :py:class:`metatensor.torch.atomistic.ModelEvaluationOptions`), on all or a subset of atoms of an atomistic system. Additionally, the wrapped ``module`` can request neighbors list to be computed by the simulation engine, and stored inside the input :py:class:`System`. This is done by defining ``requested_neighbors_lists(self) -> List[NeighborsListOptions]`` on the wrapped model or any of it's sub-module. :py:class:`MetatensorAtomisticModel` will unify identical requests before storing them and exposing it's own :py:meth:`requested_neighbors_lists()` that should be used by the engine to know what it needs to compute. There are several requirements on the wrapped ``module`` must satisfy. The main one is concerns the ``forward()`` function, which must have the following signature: >>> import torch >>> from typing import List, Dict, Optional >>> from metatensor.torch import Labels, TensorBlock >>> from metatensor.torch.atomistic import ModelOutput, System >>> class CustomModel(torch.nn.Module): ... def forward( ... self, ... systems: List[System], ... outputs: Dict[str, ModelOutput], ... selected_atoms: Optional[Labels] = None, ... ) -> Dict[str, TensorMap]: ... ... The returned dictionary should have the same keys as ``outputs``, and the values should contains the corresponding properties of the ``systems``, as computed for the subset of atoms defined in ``selected_atoms``. For some specific outputs, there are additional constrains on how the associated metadata should look like, documented in the :ref:`atomistic-models-outputs` section. Additionally, the wrapped ``module`` should not already be compiled by TorchScript, and should be in "eval" mode (i.e. ``module.training`` should be ``False``). For example, a custom module predicting the energy as a constant time the number of atoms could look like this >>> class ConstantEnergy(torch.nn.Module): ... def __init__(self, constant: float): ... super().__init__() ... self.constant = torch.tensor(constant).reshape(1, 1) ... ... def forward( ... self, ... systems: List[System], ... outputs: Dict[str, ModelOutput], ... selected_atoms: Optional[Labels] = None, ... ) -> Dict[str, TensorMap]: ... results: Dict[str, TensorMap] = {} ... if "energy" in outputs: ... if outputs["energy"].per_atom: ... raise NotImplementedError("per atom energy is not implemented") ... ... dtype = systems[0].positions.dtype ... energies = torch.zeros(len(systems), 1, dtype=dtype) ... for i, system in enumerate(systems): ... if selected_atoms is None: ... n_atoms = len(system) ... else: ... n_atoms = len(selected_atoms) ... ... energies[i] = self.constant * n_atoms ... ... systems_idx = torch.tensor([[i] for i in range(len(systems))]) ... energy_block = TensorBlock( ... values=energies, ... samples=Labels(["system"], systems_idx.to(torch.int32)), ... components=[], ... properties=Labels(["energy"], torch.IntTensor([[0]])), ... ) ... ... results["energy"] = TensorMap( ... keys=Labels(["_"], torch.IntTensor([[0]])), ... blocks=[energy_block], ... ) ... ... return results ... Wrapping and exporting this model would then look like this: >>> import os >>> import tempfile >>> from metatensor.torch.atomistic import MetatensorAtomisticModel >>> from metatensor.torch.atomistic import ModelCapabilities, ModelOutput >>> model = ConstantEnergy(constant=3.141592) >>> # put the model in inference mode >>> model = model.eval() >>> # Define the model capabilities >>> capabilities = ModelCapabilities( ... length_unit="angstrom", ... species=[1, 2, 6, 8, 12], ... outputs={ ... "energy": ModelOutput( ... quantity="energy", ... unit="eV", ... per_atom=False, ... explicit_gradients=[], ... ), ... }, ... ) >>> # wrap the model >>> wrapped = MetatensorAtomisticModel(model, capabilities) >>> # export the model >>> with tempfile.TemporaryDirectory() as directory: ... wrapped.export(os.path.join(directory, "constant-energy-model.pt")) ... """ # Some annotation to make the TorchScript compiler happy _requested_neighbors_lists: List[NeighborsListOptions] _known_quantities: Dict[str, Quantity] def __init__(self, module: torch.nn.Module, capabilities: ModelCapabilities): """ :param module: The torch module to wrap and export. :param capabilities: Description of the model capabilities. """ super().__init__() if not isinstance(module, torch.nn.Module): raise TypeError(f"`module` should be a torch.nn.Module, not {type(module)}") if isinstance(module, torch.jit.RecursiveScriptModule): raise TypeError("module should not already be a ScriptModule") if module.training: raise ValueError("module should not be in training mode") _check_annotation(module) self._module = module # ============================================================================ # # recursively explore `module` to get all the requested_neighbors_lists self._requested_neighbors_lists = [] _get_requested_neighbors_lists( self._module, self._module.__class__.__name__, self._requested_neighbors_lists, ) # ============================================================================ # self._capabilities = capabilities self._known_quantities = KNOWN_QUANTITIES length = self._known_quantities["length"] length.check_unit(self._capabilities.length_unit) # Check the units of the outputs for name, output in self._capabilities.outputs.items(): if output.quantity == "": continue if output.quantity not in self._known_quantities: raise ValueError( f"unknown output quantity '{output.quantity}' for '{name}' output, " f"only {list(self._known_quantities.keys())} are supported" ) quantity = self._known_quantities[output.quantity] quantity.check_unit(output.unit)
[docs] def wrapped_module(self) -> torch.nn.Module: """Get the module wrapped in this :py:class:`MetatensorAtomisticModel`""" return self._module
[docs] @torch.jit.export def capabilities(self) -> ModelCapabilities: """Get the capabilities of the wrapped model""" return self._capabilities
[docs] @torch.jit.export def requested_neighbors_lists( self, length_unit: Optional[str] = None, ) -> List[NeighborsListOptions]: """ Get the neighbors lists required by the wrapped model or any of the child module. :param length_unit: If not ``None``, this should contain a known unit of length. The returned neighbors lists will use this to set the ``engine_cutoff`` field. """ if length_unit is not None: length = self._known_quantities["length"] conversion = length.conversion(self._capabilities.length_unit, length_unit) else: conversion = 1.0 for request in self._requested_neighbors_lists: request.set_engine_unit(conversion) return self._requested_neighbors_lists
[docs] def forward( self, systems: List[System], options: ModelEvaluationOptions, check_consistency: bool, ) -> Dict[str, TensorMap]: """Run the wrapped model and return the corresponding outputs. Before running the model, this will convert the ``system`` data from the engine unit to the model unit, including all neighbors lists distances. After running the model, this will convert all the outputs from the model units to the engine units. :param system: input system on which we should run the model. The system should already contain all neighbors lists corresponding to the options in :py:meth:`requested_neighbors_lists()`. :param options: options for this run of the model :param check_consistency: Should we run additional check that everything is consistent? This should be set to ``True`` when verifying a model, and to ``False`` once you are sure everything is running fine. :return: A dictionary containing all the model outputs """ if check_consistency: # check that the requested outputs match what the model can do _check_outputs(self._capabilities, options.outputs) # check that the species of the system match the one the model supports for system in systems: all_species = torch.unique(system.species) for species in all_species: if species not in self._capabilities.species: raise ValueError( f"this model can not run for the atomic species '{species}'" ) # Check neighbors lists known_neighbors_lists = system.known_neighbors_lists() for request in self._requested_neighbors_lists: found = False for known in known_neighbors_lists: if request == known: found = True if not found: raise ValueError( "missing neighbors list in the system: the model requested " f"a list for {request}, but it was not computed and stored " "in the system" ) # convert systems from engine to model units if self._capabilities.length_unit != options.length_unit: length = self._known_quantities["length"] conversion = length.conversion( from_unit=options.length_unit, to_unit=self._capabilities.length_unit, ) systems = _convert_systems_units( systems, conversion, model_length_unit=self._capabilities.length_unit, system_length_unit=options.length_unit, ) # run the actual calculations outputs = self._module( systems=systems, outputs=options.outputs, selected_atoms=options.selected_atoms, ) # convert outputs from model to engine units for name, output in outputs.items(): declared = self._capabilities.outputs[name] requested = options.outputs[name] if declared.quantity == "" or requested.quantity == "": continue if declared.quantity != requested.quantity: raise ValueError( f"model produces values as '{declared.quantity}' for the '{name}' " f"output, but the engine requested '{requested.quantity}'" ) quantity = self._known_quantities[declared.quantity] conversion = quantity.conversion( from_unit=declared.unit, to_unit=requested.unit ) if conversion != 1.0: for block in output.blocks(): block.values[:] *= conversion for _, gradient in block.gradients(): gradient.values[:] *= conversion return outputs
[docs] def export(self, file: str, collect_extensions: Optional[str] = None): """Export this model to a file that can then be loaded by simulation engine. :param file: where to save the model. This can be a path or a file-like object. :param collect_extensions: if not None, all currently loaded PyTorch extension will be collected in this directory. If this directory already exists, it is removed and re-created. """ module = self.eval() try: module = torch.jit.script(module) except RuntimeError as e: raise RuntimeError("could not convert the module to TorchScript") from e # TODO: can we freeze these? # module = torch.jit.freeze(module) # record the list of loaded extensions, to check that they are also loaded when # executing the model. if collect_extensions is not None: if os.path.exists(collect_extensions): shutil.rmtree(collect_extensions) os.makedirs(collect_extensions) # TODO: the extensions are currently collected in a separate directory, # should we store the files directly inside the model file? This would makes # the model platform-specific but much more convenient (since the end user # does not have to move a model around) extensions = [] for library in torch.ops.loaded_libraries: # Remove any site-package prefix path = library for site_packages in site.getsitepackages(): if path.startswith(site_packages): path = os.path.relpath(path, site_packages) break if collect_extensions is not None: collect_path = os.path.join(collect_extensions, path) if os.path.exists(collect_path): raise RuntimeError( f"more than one extension would be collected at {collect_path}" ) os.makedirs(os.path.dirname(collect_path), exist_ok=True) shutil.copyfile(library, collect_path) # get the name of the library, excluding any shared object prefix/suffix name = os.path.basename(library) if name.startswith("lib"): name = name[3:] if name.endswith(".so"): name = name[:-3] if name.endswith(".dll"): name = name[:-4] if name.endswith(".dylib"): name = name[:-6] # Collect the hash of the extension shared library. We don't currently use # this, but it would allow for binary-level reproducibility later. with open(library, "rb") as fd: sha256 = hashlib.sha256(fd.read()).hexdigest() extensions.append({"path": path, "name": name, "sha256": sha256}) # Metadata about where and when the model was exported export_metadata = { "date": datetime.datetime.now(datetime.timezone.utc).isoformat(), "platform": platform.machine() + "-" + platform.system(), # TODO: user/hostname? } if collect_extensions is not None: export_metadata["extensions_directory"] = str(collect_extensions) torch.jit.save( module, file, _extra_files={ "torch-version": torch.__version__, "metatensor-version": metatensor_version, "extensions": json.dumps(extensions), "metadata": json.dumps(export_metadata), }, )
def _get_requested_neighbors_lists( module: torch.nn.Module, name: str, requested: List[NeighborsListOptions], ): if hasattr(module, "requested_neighbors_lists"): for new_options in module.requested_neighbors_lists(): new_options.add_requestor(name) already_requested = False for existing in requested: if existing == new_options: already_requested = True for requestor in new_options.requestors(): existing.add_requestor(requestor) if not already_requested: requested.append(new_options) for child_name, child in module.named_children(): _get_requested_neighbors_lists(child, name + "." + child_name, requested) def _check_annotation(module: torch.nn.Module): # check annotations on forward annotations = module.forward.__annotations__ expected_arguments = [ "systems", "outputs", "selected_atoms", "return", ] expected_signature = ( "`forward(self, " "systems: List[System], " "outputs: Dict[str, ModelOutput], " "selected_atoms: Optional[Labels]" ") -> Dict[str, TensorMap]`" ) if list(annotations.keys()) != expected_arguments: raise TypeError( "`module.forward()` takes unexpected arguments, expected signature is " + expected_signature ) if annotations["systems"] != List[System]: raise TypeError( "`systems` argument must be a list of metatensor atomistic `System`, " f"not {annotations['system']}" ) if annotations["outputs"] != Dict[str, ModelOutput]: raise TypeError( "`outputs` argument must be `Dict[str, ModelOutput]`, " f"not {annotations['outputs']}" ) if annotations["selected_atoms"] != Optional[Labels]: raise TypeError( "`selected_atoms` argument must be `Optional[Labels]`, " f"not {annotations['selected_atoms']}" ) if annotations["return"] != Dict[str, TensorMap]: raise TypeError( "`forward()` must return a `Dict[str, TensorMap]`, " f"not {annotations['return']}" ) def _check_outputs(capabilities: ModelCapabilities, outputs: Dict[str, ModelOutput]): for name, requested in outputs.items(): if name not in capabilities.outputs: raise ValueError( f"this model can not compute '{name}', the implemented " f"outputs are {capabilities.outputs.keys()}" ) possible = capabilities.outputs[name] for parameter in requested.explicit_gradients: if parameter not in possible.explicit_gradients: raise ValueError( f"this model can not compute explicit gradients of '{name}' " f"with respect to '{parameter}'" ) if requested.per_atom and not possible.per_atom: raise ValueError( f"this model can not compute '{name}' per atom, only globally" ) def _convert_systems_units( systems: List[System], conversion: float, model_length_unit: str, system_length_unit: str, ) -> List[System]: if conversion == 1.0: return systems new_systems: List[System] = [] for system in systems: new_system = System( species=system.species, positions=conversion * system.positions, cell=conversion * system.cell, ) # also update the neighbors list distances for request in system.known_neighbors_lists(): neighbors = system.get_neighbors_list(request) new_system.add_neighbors_list( request, TensorBlock( values=conversion * neighbors.values, samples=neighbors.samples, components=neighbors.components, properties=neighbors.properties, ), ) known_data = system.known_data() if len(known_data) != 0: warnings.warn( "the model requires a different length unit " f"({model_length_unit}) than the system ({system_length_unit}), " f"but we don't know how to convert custom data ({known_data}) " "accordingly", stacklevel=2, ) for data in known_data: new_system.add_data(data, system.get_data(data)) new_systems.append(new_system) return new_systems