[docs]@torch_jit_scriptdefblock_from_array(array)->TensorBlock:""" Creates a simple TensorBlock from an array. The metadata in the resulting :py:class:`TensorBlock` is filled with ranges of integers. This function should be seen as a quick way of creating a :py:class:`TensorBlock` from arbitrary data. However, the metadata generated in this way has little meaning. :param array: An array with two or more dimensions. This can either be a :py:class:`numpy.ndarray` or a :py:class:`torch.Tensor`. :return: A :py:class:`TensorBlock` whose values correspond to the provided ``array``. The metadata names are set to ``"sample"`` for samples; ``"component_1"``, ``"component_2"``, ... for components; and ``property`` for properties. The number of ``component`` labels is adapted to the dimensionality of the input array. The metadata associated with each label is a range of integers going from 0 to the size of the corresponding axis. The returned :py:class:`TensorBlock` has no gradients. >>> import numpy as np >>> import metatensor >>> # Construct a simple 4D array: >>> array = np.linspace(0, 10, 42).reshape((7, 3, 1, 2)) >>> # Transform it into a TensorBlock: >>> tensor_block = metatensor.block_from_array(array) >>> print(tensor_block) TensorBlock samples (7): ['sample'] components (3, 1): ['component_1', 'component_2'] properties (2): ['property'] gradients: None >>> # The data inside the TensorBlock will correspond to the provided array: >>> print(np.all(array == tensor_block.values)) True """shape=array.shapen_dimensions=len(shape)ifn_dimensions<2:raiseValueError(f"the array provided to `block_from_array` \ must have at least two dimensions. Too few provided: {n_dimensions}")samples=Labels(names=["sample"],values=_dispatch.int_array_like(list(range(shape[0])),array).reshape(-1,1),)components=[Labels(names=[f"component_{component_index+1}"],values=_dispatch.int_array_like(list(range(axis_size)),array).reshape(-1,1),)forcomponent_index,axis_sizeinenumerate(shape[1:-1])]properties=Labels(names=["property"],values=_dispatch.int_array_like(list(range(shape[-1])),array).reshape(-1,1),)device=_dispatch.get_device(array)samples=samples.to(device)components=[component.to(device)forcomponentincomponents]properties=properties.to(device)returnTensorBlock(array,samples,components,properties)