Source code for metatensor.operations.divide

from typing import List, Union

from . import _dispatch
from ._backend import (
    TensorBlock,
    TensorMap,
    check_isinstance,
    torch_jit_is_scripting,
    torch_jit_script,
)
from ._utils import (
    _check_blocks_raise,
    _check_same_gradients_raise,
    _check_same_keys_raise,
)


def _divide_block_constant(block: TensorBlock, constant: float) -> TensorBlock:
    values = block.values / constant

    result_block = TensorBlock(
        values=values,
        samples=block.samples,
        components=block.components,
        properties=block.properties,
    )

    for parameter, gradient in block.gradients():
        if len(gradient.gradients_list()) != 0:
            raise NotImplementedError("gradients of gradients are not supported")

        result_block.add_gradient(
            parameter=parameter,
            gradient=TensorBlock(
                values=gradient.values / constant,
                samples=gradient.samples,
                components=gradient.components,
                properties=gradient.properties,
            ),
        )

    return result_block


def _divide_block_block(block_1: TensorBlock, block_2: TensorBlock) -> TensorBlock:
    values = block_1.values / block_2.values

    result_block = TensorBlock(
        values=values,
        samples=block_1.samples,
        components=block_1.components,
        properties=block_1.properties,
    )

    for parameter_1, gradient_1 in block_1.gradients():
        gradient_2 = block_2.gradient(parameter_1)

        if len(gradient_1.gradients_list()) != 0:
            raise NotImplementedError("gradients of gradients are not supported")

        if len(gradient_2.gradients_list()) != 0:
            raise NotImplementedError("gradients of gradients are not supported")

        assert gradient_1.values.shape == gradient_2.values.shape
        assert gradient_1.samples == gradient_2.samples

        _shape: List[int] = []
        for c in block_1.components:
            _shape.append(len(c))
        _shape.append(len(block_1.properties))
        # we find the difference between the number of components
        # of the gradients and the values and then use it to create
        # empty dimensions for broadcasting
        diff_components = len(gradient_1.values.shape) - len(block_1.values.shape)

        gradient_samples_to_values_samples_1 = gradient_1.samples.column("sample")
        gradient_samples_to_values_samples_2 = gradient_2.samples.column("sample")
        gradient_values = -block_1.values[
            _dispatch.to_index_array(gradient_samples_to_values_samples_1)
        ].reshape(
            [-1] + [1] * diff_components + _shape
        ) * gradient_2.values / block_2.values[
            _dispatch.to_index_array(gradient_samples_to_values_samples_2)
        ].reshape(
            [-1] + [1] * diff_components + _shape
        ) ** 2 + gradient_1.values / block_2.values[
            _dispatch.to_index_array(gradient_samples_to_values_samples_2)
        ].reshape([-1] + [1] * diff_components + _shape)

        result_block.add_gradient(
            parameter=parameter_1,
            gradient=TensorBlock(
                values=gradient_values,
                samples=gradient_1.samples,
                components=gradient_1.components,
                properties=gradient_1.properties,
            ),
        )

    return result_block


[docs] @torch_jit_script def divide(A: TensorMap, B: Union[float, int, TensorMap]) -> TensorMap: if not torch_jit_is_scripting(): if not check_isinstance(A, TensorMap): raise TypeError(f"`A` must be a metatensor TensorMap, not {type(A)}") r"""Return a new :class:`TensorMap` with the values being the element-wise division of ``A`` and ``B``. If ``B`` is a :py:class:`TensorMap` it has to have the same metadata as ``A``. If gradients are present in ``A``: * ``B`` is a scalar then: .. math:: \nabla(A / B) = \nabla A / B * ``B`` is a :py:class:`TensorMap` with the same metadata of ``A``. The multiplication is performed with the rule of the derivatives: .. math:: \nabla(A / B) =(B*\nabla A-A*\nabla B)/B^2 :param A: First :py:class:`TensorMap` for the division. :param B: Second instance for the division. Parameter can be a scalar or a :py:class:`TensorMap`. In the latter case ``B`` must have the same metadata of ``A``. :return: New :py:class:`TensorMap` with the same metadata as ``A``. """ blocks: List[TensorBlock] = [] if torch_jit_is_scripting(): is_tensor_map = isinstance(B, TensorMap) else: is_tensor_map = check_isinstance(B, TensorMap) if isinstance(B, (float, int)): B = float(B) for block_A in A.blocks(): blocks.append(_divide_block_constant(block=block_A, constant=B)) elif is_tensor_map: _check_same_keys_raise(A, B, "divide") for key, block_A in A.items(): block_B = B.block(key) _check_blocks_raise( block_A, block_B, fname="divide", ) _check_same_gradients_raise( block_A, block_B, fname="divide", ) blocks.append(_divide_block_block(block_1=block_A, block_2=block_B)) else: if torch_jit_is_scripting(): extra = "" else: extra = f", not {type(B)}" raise TypeError("`B` must be a metatensor TensorMap or a scalar value" + extra) return TensorMap(A.keys, blocks)