sort¶
- metatensor.sort(tensor: TensorMap, axes: str | List[str] = 'all', descending: bool = False) TensorMap [source]¶
Sort the
tensor
according to the key values and the blocks for each specified axis inaxes
according to the label values along these axes.Each block is sorted separately, see
sort_block()
for more informationNote: This function duplicates metadata on the CPU for the purpose of sorting.
- Parameters:
axes (str | List[str]) – axes to sort. The labels entries along these axes will be sorted in lexicographic order, and the arrays values will be reordered accordingly. Possible values are
'keys'
,'samples'
,'components'
,'properties'
and'all'
to sort everything.descending (bool) – if false, the order is ascending
tensor (TensorMap)
- Returns:
sorted tensor map
- Return type:
>>> import numpy as np >>> import metatensor >>> from metatensor import TensorBlock, TensorMap, Labels >>> block_1 = TensorBlock( ... values=np.arange(9).reshape(3, 3), ... samples=Labels(["system", "atom"], np.array([[0, 3], [0, 1], [0, 2]])), ... components=[], ... properties=Labels(["n", "l"], np.array([[1, 0], [2, 0], [0, 0]])), ... ) >>> block_2 = TensorBlock( ... values=np.arange(3).reshape(1, 3), ... samples=Labels(["system", "atom"], np.array([[0, 0]])), ... components=[], ... properties=Labels(["n", "l"], np.array([[1, 0], [2, 0], [0, 0]])), ... ) >>> tensor = TensorMap( ... keys=Labels(["types"], np.array([[1], [0]])), blocks=[block_2, block_1] ... ) >>> metatensor.sort(tensor, axes="keys") TensorMap with 2 blocks keys: types 0 1
- metatensor.sort_block(block: TensorBlock, axes: str | List[str] = 'all', descending: bool = False) TensorBlock [source]¶
Rearrange the values of a block according to the order given by the sorted metadata of the given axes.
This function creates copies of the metadata on the CPU to sort the metadata.
- Parameters:
axes (str | List[str]) – axes to sort. The labels entries along these axes will be sorted in lexicographic order, and the arrays values will be reordered accordingly. Possible values are
'samples'
,'components'
,'properties'
and'all'
to sort everything.descending (bool) – if false, the order is ascending
block (TensorBlock)
- Returns:
sorted tensor block
- Return type:
>>> import numpy as np >>> import metatensor >>> from metatensor import TensorBlock, TensorMap, Labels >>> block = TensorBlock( ... values=np.arange(9).reshape(3, 3), ... samples=Labels(["system", "atom"], np.array([[0, 3], [0, 1], [0, 2]])), ... components=[], ... properties=Labels(["n", "l"], np.array([[2, 0], [3, 0], [1, 0]])), ... ) >>> print(block) TensorBlock samples (3): ['system', 'atom'] components (): [] properties (3): ['n', 'l'] gradients: None >>> # sorting axes one by one >>> block_sorted_stepwise = metatensor.sort_block(block, axes=["properties"]) >>> # properties (last dimension of the array) are sorted >>> block_sorted_stepwise.values array([[2, 0, 1], [5, 3, 4], [8, 6, 7]]) >>> block_sorted_stepwise = metatensor.sort_block( ... block_sorted_stepwise, axes=["samples"] ... ) >>> # samples (first dimension of the array) are sorted >>> block_sorted_stepwise.values array([[5, 3, 4], [8, 6, 7], [2, 0, 1]]) >>> # sorting both samples and properties at the same time >>> sorted_block = metatensor.sort_block(block) >>> bool(np.all(sorted_block.values == block_sorted_stepwise.values)) True >>> # This function can also sort gradients: >>> sorted_block.add_gradient( ... parameter="g", ... gradient=TensorBlock( ... values=np.arange(18).reshape(3, 2, 3), ... samples=Labels(["sample"], np.array([[1], [2], [0]])), ... components=[Labels.range("direction", 2)], ... properties=sorted_block.properties, ... ), ... ) >>> sorted_grad_block = metatensor.sort_block(sorted_block) >>> sorted_grad_block.gradient("g").samples == Labels.range("sample", 3) True >>> sorted_grad_block.gradient("g").properties == sorted_block.properties True >>> # the components (middle dimensions) are also sorted: >>> sorted_grad_block.gradient("g").values array([[[12, 13, 14], [15, 16, 17]], [[ 0, 1, 2], [ 3, 4, 5]], [[ 6, 7, 8], [ 9, 10, 11]]])