Source code for metatensor.torch.atomistic.systems_to_torch

import warnings
from typing import List, Optional, Union

import numpy as np

import torch

from . import System


try:
    import ase

    HAS_ASE = True
except ImportError:
    HAS_ASE = False


class IntoSystem:
    """A type that can be converted into a
    :py:class:`metatensor.torch.atomistic.System`.

    This is an abstract class that is used to indicate a class whose objects
    can be converted into a :py:class:`System`. For the moment,
    the only supported type is :py:class:`ase.Atoms`."""

    pass


[docs] def systems_to_torch( systems: Union[IntoSystem, List[IntoSystem]], dtype: Optional[torch.dtype] = None, device: Optional[torch.device] = None, positions_requires_grad: bool = False, cell_requires_grad: bool = False, ) -> Union[System, List[System]]: """Converts a system or a list of systems into a ``metatensor.torch.atomistic.System`` or a list of such objects. :param: systems: The system or list of systems to convert. :param: dtype: The dtype of the output tensors. If ``None``, the default dtype is used. :param: device: The device of the output tensors. If ``None``, the default device is used. :param: positions_requires_grad: Whether the positions tensors of the outputs should require gradients. :param: cell_requires_grad: Whether the cell tensors of the outputs should require gradients. :return: The converted system or list of systems. """ if isinstance(systems, list): return [ _system_to_torch( system, dtype, device, positions_requires_grad, cell_requires_grad ) for system in systems ] else: return _system_to_torch( systems, dtype, device, positions_requires_grad, cell_requires_grad )
def _system_to_torch( system: IntoSystem, dtype: Optional[torch.dtype], device: Optional[torch.device], positions_requires_grad: bool, cell_requires_grad: bool, ) -> System: """Converts a system into a ``metatensor.torch.atomistic.System``. :param: system: The system to convert. :param: dtype: The dtype of the output tensors. If ``None``, the default dtype is used. :param: device: The device of the output tensors. If ``None``, the default device is used. :param: positions_requires_grad: Whether the positions tensors of the outputs should require gradients. :param: cell_requires_grad: Whether the cell tensors of the outputs should require gradients. :return: The converted system. """ if not HAS_ASE: raise RuntimeError("The `ase` package is required to convert systems to torch.") if not isinstance(system, ase.Atoms): raise ValueError( "Only `ase.Atoms` objects can be converted to `System`s " f"for now; got {type(system)}." ) if dtype is None: # this is necessary because creating torch tensors from numpy arrays # takes the dtype from the numpy array, which is not always the default # dtype dtype = torch.get_default_dtype() positions = torch.tensor( system.positions, requires_grad=positions_requires_grad, dtype=dtype, device=device, ) cell_vectors_are_not_zero = np.any(system.cell != 0, axis=1) if not np.all(cell_vectors_are_not_zero == system.pbc): warnings.warn( "A conversion to `System` was requested for an `ase.Atoms` object " "with one or more non-zero cell vectors but where the corresponding " "boundary conditions are set to `False`. " "The corresponding cell vectors will be set to zero.", stacklevel=3, ) cell = torch.zeros((3, 3), dtype=dtype, device=device) pbc = torch.tensor(system.pbc, dtype=torch.bool, device=device) cell[pbc] = torch.tensor(system.cell[system.pbc], dtype=dtype, device=device) types = torch.tensor(system.numbers, device=device, dtype=torch.int32) return System(positions=positions, cell=cell, types=types, pbc=pbc)